
The File Transfer SysEx API is an extension of the Electra One SysEx Implementation. It adds a way for you to upload, download,
list, and delete files stored inside the Electra One controller.

This API is especially useful when you need to manage files like presets, Lua scripts, performances, or snapshots directly through
MIDI SysEx messages. While the general SysEx Implementation provides essential tools for basic file management, the File
Transfer SysEx API extends that functionality, adding features such as:

Transferring large files in smaller chunks

Verifying file integrity using MD5 checks

Managing multiple Lua script files within a preset slot

And more advanced file operations

The File Transfer API uses the same message structure as the general Electra One SysEx Implementation. If you are new to SysEx
communication or the Electra One message format, we recommend starting with the Electra One SysEx API documentation first.

Note

To utilize the File Transfer SysEx API described in this document, you must have Firmware version 4.0 or later installed.

The Electra One controller uses an SD card to store presets, Lua scripts, and other files. It also stores important system resources
such as fonts, graphical assets, and configuration files. However, the SD card is not used to store the firmware — the controller’s
firmware is stored separately in dedicated internal flash memory.

The SD card can be accessed through the slot located on the side of the controller enclosure. On older revisions of the Electra One
MK2, the SD card slot is not externally accessible and is located under the plastic lid on the bottom of the controller.

The files are organized on the SD card in the following file structure:

File Transfer SysEx API

Internal file storage

File system structure

-+- assets
 |
 +- boot
 |
 +- cache
 |
 +- ctrlv2 -+- captures
 |
 +- lua
 |
 +- presets
 |
 +- slots -+- b00 -+- p00

File Transfer SysEx API | Electra One Documentation

Page1

https://docs.electra.one/developers/midiimplementation.html

System folder for fonts and graphical data files.

System folder used for applying firmware and bootloader updates.

System folder for storing file transfers that are in progress.

Folder that holds all the files needed to run the MIDI controller firmware.

Folder for saving captures, collections of MIDI messages. Capture data files are organized into subfolders based on project ID
(projectId).

Folder for storing preloaded Lua modules. It contains namespace subfolders, typically named after the developer's nickname.
Developers are responsible for managing their own folders. Lua modules stored here can be imported in preset Lua scripts using
Lua’s require function.

Developers who would like their Lua modules to be included in official Electra One releases and distributed with new controllers -
should contact Electra One support.

Folder for storing preloaded presets. Similar to the Lua folder, it uses namespace subfolders based on developer nicknames.
Preloaded presets can be used to provision preset slots using the Load Preloaded Preset SysEx command.

Developers who would like their preloaded presets to be included in official Electra One releases and distributed with new
controllers - should contact Electra One support.

Folder for storing the 72 available preset slots (6 banks of 12 presets each). Files are organized into:

bnn folders (one for each bank)

pnn folders (one for each preset slot within a bank)

assets

boot

cache

ctrlv2

ctrlv2/captures

ctrlv2/lua

ctrlv2/presets

ctrlv2/slots

 | | |
 | | +- p01
 | | |
 | | +- ...
 | |
 | +- b01
 | |
 | +- ...
 |
 +- snaps
 |
 + configv4.cfg

File Transfer SysEx API | Electra One Documentation

Page2

Each pnn preset slot folder can contain:

preset.json — the preset’s main JSON file

main.lua — the Lua script that runs when the preset is loaded

devices.json — device override definitions

data.json — persisted Lua table data

performance.json — performance configuration

Folder for storing snapshots, saved values of preset controls. Snapshot files are organized into subfolders based on project ID
(projectId).

There are other system folders and files on the SD card, but the ones listed above are the most important for developers to know
about and use.

The files on the SD card can also be accessed using the USB Mode in the controller's bootloader. When enabled, the controller
appears as an external disk drive on your computer. However, it is important to keep in mind that the controller is not a full-featured
USB mass storage device — operations may take longer than usual, and formatting the SD card is not possible through Disk Mode.

The File Transfer protocol is built around the idea of a transfer cache — a temporary location where files are transferred in chunks,
assembled, and then moved to their final destination.

The protocol supports transferring multiple files at once and distributing them to their final locations as a single atomic transaction,
meaning either all files are successfully transferred together, or none are.

The general workflow is as follows:

1. Open a file transfer cache transaction.

2. Register the individual files that will be transferred in the transaction.

3. Transfer the file chunks for all registered files.

4. Commit the transaction, verifying file integrity and copying the completed files to their final locations.

All commands use the standard ACK/NACK handshake to confirm success or failure. In addition, during chunk transfers, the
controller reports progress information back to the host.

Starts a new file transfer transaction. Any previously transferred data or unfinished transactions are cleared, and a new transaction is
initialized.

ctrlv2/snaps

USB Disk mode

Protocol Handshake

Open the cache

0xF0 0x00 0x21 0x45 0x01 0x2D 0xF7

File Transfer SysEx API | Electra One Documentation

Page3

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Upload command

0x2D Staged cache

0xF7 SysEx closing byte

Registers individual files for transfer. Each file is identified by a numeric fileId (0 .. 127). For each file, its total size must also
be provided. The size is split into four 7-bit bytes (following the standard MIDI SysEx 7-bit encoding).

If multiple files are to be transferred in a single transaction, this command must be sent separately for each file, using a unique
fileId and providing the correct size for each file.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Upload command

0x2E Staged cache header

file-id Numeric fileId (0 .. 127)

size-0 Least significant 7 bits of the file size

size-1 Bits 7–13 of the file size

size-2 Bits 14–20 of the file size

size-4 Most significant bits 21–27 of the file size

0xF7 SysEx closing byte

The file size must be split into four 7-bit parts using the following logic:

Transfers a data chunk for a previously registered file. Each chunk is associated with a file using its fileId. The chunk can carry 7-
bit encoded data of arbitrary length.

After a chunk is transferred, its length is subtracted from the total remaining size of all files registered in the transaction. The
controller continuously reports the total amount of data transferred so far using the Transfer Report event message.

Register the files

Transfer chunks

0xF0 0x00 0x21 0x45 0x01 0x2E file-id size-0 size-1 size-2 size-3 F7

size-0 = fileSize & 0x7F
size-1 = (fileSize >> 7) & 0x7F
size-2 = (fileSize >> 14) & 0x7F
size-3 = (fileSize >> 21) & 0x7F

File Transfer SysEx API | Electra One Documentation

Page4

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Upload command

0x2F Staged cache chunk

file-id Numeric fileId (0 .. 127)

7-bit-data 7-bit data of arbitrary length

0xF7 SysEx closing byte

After all chunks are successfully transferred, the Commit command must be called to finalize the transfer. This command
distributes the files to their final locations.

Before moving the files, the controller verifies the integrity of each file using its provided MD5 checksum.

The instructions for committing the transaction are included in a JSON document attached to the command. This JSON document
associates each fileId with its target type, destination location, and corresponding MD5 digest.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x04 Update command

0x2D Staged cache

file-commit-json JSON describing the file distribution

0xF7 SysEx closing byte

Commit the transaction

An example of the file-commit-json

0xF0 0x00 0x21 0x45 0x01 0x2F file-id 7-bit-data 0xF7

0xF0 0x00 0x21 0x45 0x04 0x2D file-commit-json 0xF7

{
 "files":[
 {
 "id":1,
 "location":"slots",
 "type":"luaModule",
 "path":"test",
 "bankNumber":0,

File Transfer SysEx API | Electra One Documentation

Page5

The files element is an array containing the individual files to be committed.

The id field is the file identifier that was registered using the Register command.

The location field is an enum that specifies where the file will be moved after the transfer is completed. Files can only be
moved to predefined locations, which are:

slots - preset slots

updates - boot folder for firmware and bootloader updates

assets - graphical assets and system files

modules - preloaded Lua modules

presets - preloaded presets

root - firmware root (used for configuration files)

Some locations may require additional parameters to be provided:

The slots location requires bankNumber and slot to be provided. For additional Lua source files, path must be provided.

bankNumber - a numeric id of the preset bank (0 .. 5)

slot - a numeric id of the slot within the bank (0 .. 11)

path - file name of the Lua file, excluding the .lua extension. path is a plain filename and cannot include subfolders.

The preloaded Lua modules require namespace and path to be provided.

namespace - name of the collection of Lua modules, usually a nickname of the developer

path - name of the Lua file, excluding the .lua extension, path is a plain filename and cannot include subfolders.

The presloaded presets require namespace and path to be provided.

namespace - name of the collection of preloaded presets, usually a nickname of the developer

path - name of the preloaded preset, excluding the .json extension, path is a plain filename and cannot include subfolders.

files

id

location

slots

modules

presets

type

 "slot":0,
 "md5":"1c40e4876067a51b9ed5ee73b7a32f09"
 }
]
}

File Transfer SysEx API | Electra One Documentation

Page6

Specifies the type of file to be saved to the location. Only predefined file types are allowed, which are:

firmware — A firmware file to be uploaded to the internal flash

bootloader — A bootloader firmware file to be uploaded to the internal flash

preset — A preset file to be uploaded to a slot or to preloaded presets

lua — A Lua script file to be executed

luaModule — A Lua module

ui — A graphical assets file

config — A configuration file

deviceList — A Device Overrides definition

datafile — A persisted Lua table data file

performance — A performance file

MD5 digest used to verify the integrity of the transferred file. If the MD5 digest calculated over the transferred file differs from the
MD5 digest provided in the commit JSON, the entire distribution process will be canceled. In that case, the transferred files will
remain stored in the transfer cache.

This section explains how to query file information from various storage locations. The File Transfer SysEx API uses a JSON
document to describe each query.

If you only need to work with files stored in preset slots, you can use the simpler Preset Slot Information query described in the
SysEx Implementation document.

A request to fetch a list of files stored in a specific location. The location to be queried is specified using a JSON document. Some
locations may require additional parameters, following the same rules described earlier in the Commit the transaction section.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x34 Location

location-query-json-data JSON document specifying the location to be queried

0xF7 SysEx closing byte

MD5

Querying data from the controller

Get Location files

Request

0xF0 0x00 0x21 0x45 0x02 0x34 location-query-json-data 0xF7

File Transfer SysEx API | Electra One Documentation

Page7

https://docs.electra.one/developers/midiimplementation.html#get-preset-slot-information

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x34 Location

location-json-data JSON document with a list of files stored in location

0xF7 SysEx closing byte

An example of location-query-json-data

Response

An example of location-json-data

{
 "location":"slots",
 "bankNumber":0,
 "slot":0
}

0xF0 0x00 0x21 0x45 0x01 0x34 location-json-data 0xF7

{
 "version":1,
 "path":"/ctrlv2/slots/b00/p00",
 "exists":true,
 "files":[
 {
 "name":"preset.json",
 "md5":"b58f9ee9391b7e49f471fcbb2deb536c"
 },
 {
 "name":"main.lua",
 "md5":"7f00373c5818f254ef19a82217a18be0"
 },
 {
 "name":"devices.json",
 "md5":"5dec6bf7eebb098dda3d706fe6c2f115"
 }
]
}

File Transfer SysEx API | Electra One Documentation

Page8

The File Transfer SysEx API provides a command to clear the contents of a specified location. The location where files should be
removed is specified using a JSON document. If you only need to clear files from preset slots, you can use the simpler Clear preset
slot command described in the SysEx Implementation document.

The Remove Files command deletes all files stored in a specific location. The location is specified using the same JSON document
format as the Get Location files query.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x05 Remove command

0x34 Location

location-query-json-data bytes representing ASCII bytes of the preset file

0xF7 SysEx closing byte

While transferring file chunks, the controller reports the amount of data transferred so far. Developers can use this information,
together with the total size provided during the initial file registration, to track the overall transfer progress.

By default, controller events are transmitted through the Electra Controller CTRL MIDI port. This default behavior can be
changed using the Set Event Port command, allowing developers to route these user-driven event messages to a different USB
device MIDI port if needed — keeping event traffic separated from other MIDI streams.

The Report Progress event informs the host about the amount of data that has been transferred so far within the current file transfer
transaction.

Remove files

Remove files from location

An example of location-query-json-data

Controller events

Report progress

0xF0 0x00 0x21 0x45 0x05 0x34 location-query-json-data 0xF7

{
 "location":"modules",
 "namespace":"xot",
 "path":"ableton"
}

File Transfer SysEx API | Electra One Documentation

Page9

https://docs.electra.one/developers/midiimplementation.html#clear-preset-slot
https://docs.electra.one/developers/midiimplementation.html#clear-preset-slot

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7E Controller event

0x2D Staged cache

size-0 Least significant 7 bits of the file size

size-1 Bits 7–13 of the file size

size-2 Bits 14–20 of the file size

size-4 Most significant bits 21–27 of the file size

0xF7 SysEx closing byte

To reconstruct the size of data from the four 7-bit size parts received (size-0, size-1, size-2, and size-3), use the following logic:

The Progress report with size of 138 bytes:

Example

0xF0 0x00 0x21 0x45 0x7E 0x2D size-0 size-1 size-2 size-3 0xF7

size = size-0 + (size-1 << 7) + (size-2 << 14) + (size-3 << 21)

0xF0 0x00 0x21 0x45 0x7E 0x2D 0x10 0x01 0x00 0x00 0xF7

File Transfer SysEx API | Electra One Documentation

Page10

