
The Electra One MIDI controller can be configured, programmed, and fully controlled using MIDI SysEx (System Exclusive)
messages. This document explains how SysEx messages are used to communicate with the controller — including how to send
data, request information, and manage its behavior — all through the USB MIDI interface.

In fact, the full Electra One web-based editor running app.electra.one is built entirely on top of this very same SysEx API.

Whether you're building your own tools or integrating Electra One into a larger MIDI setup, this guide will help you understand the
key SysEx commands and how to use them effectively.

Note

To utilize the SysEx Implementation described in this document, you must have Firmware version 4.0 or later installed.

All byte values in this document are written in hexadecimal format, using the 0xNN notation, where NN is a value between 00

and FF .

Unless otherwise noted, all numbers should be interpreted as hexadecimal. If decimal notation is used, it will be clearly stated.

Every SysEx message must include a manufacturer Id to identify which device or brand the message is intended for. This helps
prevent conflicts and ensures that messages are correctly interpreted by the right device.

Electra One uses the official Manufacturer SysEx Id assigned by the MIDI Association to Electra One s.r.o.:

This Id must appear at the beginning of every SysEx message sent to an Electra One controller.

Electra One SysEx messages can be sent through any of the controller’s USB device MIDI ports. However, it is recommended to
use the Electra Controller CTRL port whenever possible. Using this dedicated port helps separate Electra’s management
SysEx messages from regular MIDI traffic.

On some systems, this port may appear under a different name:

Windows: MIDIIN3

Linux: PORT 3

Responses to requests are always sent back through the same USB port the request came from.

SysEx implementation

Byte Notation

Manufacturer SysEx Id

The Management Port

0x00 0x21 0x45

SysEx implementation | Electra One Documentation

Page1

Event notifications (triggered by user interaction on the controller) are sent by default to the Electra Controller CTRL port.
This behavior can be changed — see Set the MIDI port for UI events for more details.

Electra One uses a simple request–response protocol for exchanging data over SysEx.
Each message sent to the controller expects a specific type of response. This handshake ensures reliable communication and lets
you confirm whether the request was received and handled correctly.

Requests sent to Electra One fall into two main categories:

Data Queries – Used to request information from the controller.

These requests do not modify any state or data on the device. They only fetch and return data.

Commands – Used to perform actions or change data on the controller.

These requests do modify the controller’s internal state or configuration.

When a Data Query is sent, Electra One responds with a message containing the requested data in JSON format.

When a Command is sent, Electra One replies with either:

ACK (Acknowledged) – The command was successfully received and executed.

NACK (Not Acknowledged) – The command failed (e.g., due to incorrect structure or invalid data).

ACK and NACK responses let you know if the controller accepted your request, so your application can respond in the right way.

There may be situations where multiple Commands are sent at the same time.
In these cases, it can be difficult to tell which ACK or NACK response belongs to which request. To solve this, Commands can
optionally include a Transaction Id . This Id helps you track and match each response to its original request — especially
useful when multiple requests are being processed asynchronously or out of order.

If used, the Transaction Id must be inserted immediately after the Manufacturer SysEx Id using the following format:

Where:

0xNN is the least significant 7 bits (LSB) of the transaction Id

0xMM is the most significant 7 bits (MSB) of the transaction Id

If a Transaction Id is included in the Command, the corresponding ACK or NACK response will also include the same two
bytes, allowing you to match the response to the original command. See, ACK / NACK for more details.

The transaction Id 4183 should be transferred as

Request / Response Handshake

Transaction Id

Example

0x00 0xNN 0xMM

0x00 0x77 0x20

SysEx implementation | Electra One Documentation

Page2

Electra One firmware versions earlier than 4.0.0 do not support Transaction Ids. If you include a Transaction Id with a
command on older firmware, it will not work as expected. For this reason, your software should always check the firmware version
before using this feature.

After the Manufacturer SysEx Id (and optional Transaction Id , if used), the next two bytes in the message define:

1. The Operation – what kind of action should be performed

2. The Resource – what type of data the action should apply to

These two bytes are essential for telling the controller exactly what you're asking it to do and where the action should be applied.

The Operation byte tells Electra One whether the request is a Data query. or a Command that

The operation types include:

upload – upload new data (e.g. a preset or Lua script)

request - query data stored on the controller

create – create a data resource (eg. snapshot)

update – make a persitent change to a data resource

remove – remove data permanently

switch - change active resource

updateRuntime - update run-time volatile data

There are additional special operations, which will be described later in this document.

The second byte identifies the data resource the operation should target.
It tells the controller what kind of data is being queried or changed.

Some example resources include:

Preset – the entire preset configuration

Control – a single control within a preset

System – system-level settings or configuration

File – a file or file location

Device – information about connected MIDI devices

There are many types of data resources available. You'll find their descriptions later in this document.

By combining the Operation and Resource bytes, your message tells Electra One exactly:

What to do (operation)

And what to do it with (resource)

Operation and Resource Bytes

Operations

Resource Byte

SysEx implementation | Electra One Documentation

Page3

Most operations require additional data to work, for example, a preset in JSON format or the number of a preset slot to activate.
This extra data is called the Payload, and it comes immediately after the Operation and Resource bytes in the SysEx message.

Depending on the type of operation, the payload format can vary. Some operations require binary payloads, others require data
formatted as JSON.

While handling different payload formats may add a bit of complexity for software developers using the SysEx API, this design
greatly improves performance by avoiding unnecessary JSON parsing when it's not needed.

When transferring JSON payload, the individual bytes must be transferred using their ASCII codes and stay strickly in 7-bit range.

Now that we’ve covered all the components of a message, we can take a look at the overall structure of a SysEx API message.

A SysEx API message without a Transaction Id:

for example a Command with binary data Payload:

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x05 Operation Remove

0x01 Data resource Preset

0x00 0x05 Payload (bankNumber and slot number)

0xF7 SysEx closing byte

or a Command with mixed binary and JSON data Paylaod:

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x14 Operation Update runtime

Payload

Message Structure

Without Transaction Id

0xF0 manufacturer-id operation resource payload 0xF7

0xF0 0x00 0x21 0x45 0x02 0x05 0x01 0x00 0x05 0xF7

0xF0 0x00 0x21 0x45 0x14 0x07 0x02 0x00 {"name":"Track2"} 0xF7

SysEx implementation | Electra One Documentation

Page4

0x07 Data resource Control

0x00 0x05 {"name":"Track2"} Payload (control Id LSB, control Id MSB, JSON data)

0xF7 SysEx closing byte

upon processing the command, the Electra One controller will respond with the ACK or NACK according to the result of the
operation.

an example of the ACK response:

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7E Status

0x01 Acknowledged

0x00 0x00 No transaction Id available

0xF7 SysEx closing byte

A SysEx API message with a Transaction Id:

for example a Command with binary data Payload:

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x00 Transaction Id flag

0x77 0x20 Transaction Id 4183

0x05 Operation Remove

0x01 Data resource Preset

0x00 0x05 Payload (bankNumber and slot number)

0xF7 SysEx closing byte

With Transaction Id

0xF0 0x00 0x21 0x45 0x7E 0x01 0x00 0x00 0xF7

0xF0 manufacturer-id 0x00 transaction-id operation resource payload 0xF7

0xF0 0x00 0x21 0x45 0x00 0x77 0x20 0x02 0x05 0x01 0x00 0x05 0xF7

SysEx implementation | Electra One Documentation

Page5

Upon processing the command, the Electra One controller will respond with either an ACK or NACK , depending on the result of
the operation. If a Transaction Id was included in the request, it will be echoed back in the ACK / NACK response.

an example of the NACK response:

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7E Status

0x00 Not-Acknowledged

0x77 0x20 Transaction Id 4183

0xF7 SysEx closing byte

A Controller Event is a special type of SysEx message that Electra One sends out when something important occurs. These events
are typically triggered by user actions or as part of handling incoming SysEx messages or external MIDI control commands.

The controller may send an event message when:

Switching a page

Switching a preset

Changing the Control Set

Touching any knob

Connecting a USB device

Acknowledging a command

Sending a log message at the user's request

Some event messages are always sent when the event occurs. Others require the user (or software) to explicitly subscribe in order to
receive them. Details on which events require subscriptions — and how to subscribe — are provided in the sections below.

This section covers the set of queries used to retrieve information from the Electra One controller. The data returned may include
runtime information, static configuration, or files stored internally on the controller.

The Electra One MIDI controller can provide information about its hardware and the currently loaded firmware upon request.

This call is useful when you need to check if the connected Electra One is working properly and to retrieve details about the
firmware it is running.

Controller events

Querying data from the controller

Get Electra info

0xF0 0x00 0x21 0x45 0x7E 0x00 0x77 0x20 0xF7

SysEx implementation | Electra One Documentation

Page6

For example, the Electra App and the Electra Editor use this call to verify that the controller is connected correctly and to display
the connection status indicator.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x7F Electra information

0xF7 SysEx closing byte

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x7F Electra information

info-json-data JSON document with info about Electra (see below)

0xF7 SysEx closing byte

A request call to fetch the run-time information from the Electra firmware. Only the information about free memory is included at
the present time.

Request

Response

An example of info-json-data

Get Run-time information

0xF0 0x00 0x21 0x45 0x02 0x7F 0xF7

0xF0 0x00 0x21 0x45 0x01 0x7F info-json-data 0xF7

{
 "versionText":"v4.0.0",
 "versionSeq":400000000,
 "serial":"EO2-5301787f",
 "hwRevision":"3.0"
}

SysEx implementation | Electra One Documentation

Page7

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x7E Run-time information

0xF7 SysEx closing byte

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x7E Run-time information

runtime-json-data JSON document with info about run-time data

0xF7 SysEx closing byte

Get preset request retrieves the preset JSON stored in a specific preset slot on the controller. If no bank number or slot number is
provided, the controller will return the preset from the currently active slot. If both parameters are provided, the controller will fetch
the preset from the specified bank and slot.

A preset is stored as a preset.json file in the preset slot.

Retrieve the JSON of the currently active preset:

Request

Response

An example of runtime-json-data

Get Preset

Request

0xF0 0x00 0x21 0x45 0x02 0x7E 0xF7

0xF0 0x00 0x21 0x45 0x01 0x7E runtime-json-data 0xF7

{
 "freePercentage": 85
}

SysEx implementation | Electra One Documentation

Page8

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x01 Preset file

0xF7 SysEx closing byte

Retrieve a preset by specifying its bank number and slot number:

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x01 Preset file

bankNumber Bank number (0 .. 5)

slot Slot (0 .. 11)

0xF7 SysEx closing byte

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x01 Preset file

preset-json-data JSON document with info about Electra (see below)

0xF7 SysEx closing byte

Electra One MIDI controller responds with the SysEx message that has exactly the same format as the Preset upload message. Thus,
a SysEx message downloaded with the Get preset call can be used to upload the preset to Electra's active preset slot later on.

Detailed information about preset-json-data is provided at Preset format description

Response

0xF0 0x00 0x21 0x45 0x02 0x01 0xF7

0xF0 0x00 0x21 0x45 0x02 0x01 bankNumber slot 0xF7

0xF0 0x00 0x21 0x45 0x01 0x01 preset-json-data 0xF7

SysEx implementation | Electra One Documentation

Page9

https://docs.electra.one/developers/presetformat.html

Get Lua script request retrieves the main Lua script in a specific preset slot on the controller. If no bank number or slot number is
provided, the controller will return the Lua script from the currently active slot. If both parameters are provided, the controller will
fetch the Lua script from the specified bank and slot.

The main Lua script refers to the script file that runs when the preset is initialized. This request only retrieves the main script, it
cannot be used to fetch additional Lua files. Any extra Lua files must be accessed separately using the SysEx File Transfer API.

A Lua script is stored as a main.lua file in the preset slot.

Retrieve the Lua script of the currently active preset:

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x0C Lua script file

0xF7 SysEx closing byte

Retrieve a Lua script by specifying its bank number and slot number:

An example of preset-json-data

Get Lua script

Request

{
 "version": 2,
 "name": "ADSR Test",
 "projectId": "d8WjdwYrP3lRyyx8nEMF",
 "pages": [
 ...
],
 "devices": [
 ...
],
 "overlays": [
 ...
],
 "groups": [
 ...
],
 "controls": [
 ...
]
}

0xF0 0x00 0x21 0x45 0x02 0x0C 0xF7

SysEx implementation | Electra One Documentation

Page10

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x0C Lua script file

bankNumber Bank number (0 .. 5)

slot Slot (0 .. 11)

0xF7 SysEx closing byte

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x0C Lua Script file

script-script-code bytes representing a script code of the Electra One Lua script application

0xF7 SysEx closing byte

Detailed information about developing Lua script applications is provided at Electra One Lua Extension documentation.

Response

An example of script-script-code

0xF0 0x00 0x21 0x45 0x02 0x0C bankNumber slot 0xF7

0xF0 0x00 0x21 0x45 0x01 0x0C script-script-code 0xF7

-- Demo application

-- the Setup
clockCounter = 0
beatEnabled = 0

-- User functions
function myPrint(text)
 print("my Lua: " .. text)
end

-- Standard callbacks
function midi.onClock(midiInput)
 if beatEnabled == 1 then
 if math.mod(clockCounter, 24) == 0 then

SysEx implementation | Electra One Documentation

Page11

https://docs.electra.one/developers/luaext.html

This request retrieves the Device overrides stored in a specific preset slot on the controller. If no bank or slot number is provided,
the controller will return the overrides from the currently active preset. If both parameters are provided, it will return the overrides
from the specified bank and slot.

A Device override is a custom modification of the devices used in a preset. It allows users to change the MIDI ports and channels
assigned to devices without modifying the preset itself, making it easier to adapt presets to different setups or hardware
configurations.

A Device overrides defintion is stored as a devices.json file in the preset slot.

Retrieve the Device overrides of the currently active preset:

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x0F Preset devices

0xF7 SysEx closing byte

Retrieve a Device overrides by specifying its bank number and slot number:

Get Device overrides

Request

 myPrint("midi beat: interface=" .. midiInput.interface)
 end
 end
 clockCounter = clockCounter + 1
end

function onButtonDown(buttonId)
 myPrint("button " .. buttonId .. " pressed")

 if buttonId == BUTTON_1 then
 myPrint("Beat enabled")
 beatEnabled = 1
 elseif buttonId == BUTTON_4 then
 myPrint("Beat disabled")
 beatEnabled = 0
 end
end

0xF0 0x00 0x21 0x45 0x02 0x0F 0xF7

0xF0 0x00 0x21 0x45 0x02 0x0F bankNumber slot 0xF7

SysEx implementation | Electra One Documentation

Page12

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x0F Preset devices

bankNumber Bank number (0 .. 5)

slot Slot (0 .. 11)

0xF7 SysEx closing byte

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x0F Preset devices

preset-devices-json-data JSON document with a list of preset device overrides

0xF7 SysEx closing byte

Response

An example of preset-devices-json-data

0xF0 0x00 0x21 0x45 0x01 0x0F preset-devices-json-data 0xF7

{
 "version":1,
 "devices":[
 {
 "id":1,
 "name":"Selection Device",
 "port":"port1",
 "channel":4,
 "rate":0
 },
 {
 "id":2,
 "name":"OP-XY",
 "port":"port1",
 "channel":1,
 "rate":0
 }
]
}

SysEx implementation | Electra One Documentation

Page13

This request retrieves the persisted preset data stored in a specific preset slot on the controller. If no bank or slot number is
provided, the controller returns the persisted data from the currently active slot. If both parameters are provided, the data is
retrieved from the specified bank and slot.

Persisted preset data is a JSON file that contains a Lua table previously saved using the persist() function. Preset developers
can use this feature to store custom configuration settings, runtime values, and other important data that should remain available
even after the controller is restarted.

A Persisted data is stored as a data.json file in the preset slot.

Retrieve persisted data of the currently active preset:

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x12 JSON data file

0xF7 SysEx closing byte

Retrieve persisted data by specifying its bank number and slot number:

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x12 JSON data file

bankNumber Bank number (0 .. 5)

slot Slot (0 .. 11)

0xF7 SysEx closing byte

Get Persisted data

Request

Response

0xF0 0x00 0x21 0x45 0x02 0x12 0xF7

0xF0 0x00 0x21 0x45 0x02 0x12 bankNumber slot 0xF7

0xF0 0x00 0x21 0x45 0x01 0x12 datafile-json-data 0xF7

SysEx implementation | Electra One Documentation

Page14

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x12 Persisted JSON data file

datafile-json-data JSON data saved with a Lua persist() function

0xF7 SysEx closing byte

Get Performance request retrieves the performance JSON stored in a specific preset slot on the controller. If no bank number or slot
number is provided, the controller will return the performance data from the currently active slot. If both parameters are provided,
the controller will fetch the performace from the specified bank and slot.

A Performance is a structured JSON file that defines a custom page made up of controls and macro controls that reference existing
controls within the preset. It allows users to build a personalized performance view with re-arranged layout, without modifying the
original preset.

A Performance is stored as a performance.json file in the preset slot.

Retrieve the performance of the currently active preset:

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x11 Performance

An example of datafile-json-data

Get Performance

Request

{
 array = { 1, 2, 3 },
 objArray = {
 { key1 = "text" },
 { key2 = 1.2 },
 { key3 = true }
 },
 number = 1.42,
 text = "hello table",
 boolean = false
}

0xF0 0x00 0x21 0x45 0x02 0x11 bankNumber slot 0xF7

SysEx implementation | Electra One Documentation

Page15

0xF7 SysEx closing byte

Retrieve the performance of the currently active preset:

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x11 Performance

bankNumber Bank number (0 .. 5)

slot Slot (0 .. 11)

0xF7 SysEx closing byte

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x11 Performance

performance-json-data Performance JSON data

0xF7 SysEx closing byte

Detailed information about performance-json-data is provided at Performance format description

Response

An example of performance-json-data

0xF0 0x00 0x21 0x45 0x02 0x11 bankNumber slot 0xF7

0xF0 0x00 0x21 0x45 0x01 0x11 performance-json-data 0xF7

{
 "version":1,
 "references":[
 {
 "controlSetId":1,
 "potId":1,
 "controlId":1,
 "name":"Fader A"
 },
 {

SysEx implementation | Electra One Documentation

Page16

https://docs.electra.one/developers/performanceformat.html

A request to fetch the current Electra One configuration. This configuration file defines the general behavior and settings of the
controller

0xF0 SysEx header byte

Get Configuration

Request

 "controlSetId":1,
 "potId":6,
 "valueRefs":[
 {
 "controlId":1,
 "valueId":"value",
 "channel":1,
 "mode":"dataPipe",
 "pipe": {
 "name":"output",
 "bankNumber":5,
 "slot":1
 }
 },
 {
 "controlId":2,
 "valueId":"value",
 "mode":"setValue",
 "depth":50
 }
],
 "name":"All faders"
 }
],
 "groups":[
 {
 "id":4,
 "pageId":1,
 "name":"GROUP LABEL",
 "color":"ffffff",
 "bounds":[
 14,
 6,
 993,
 171
]
 }
]
}

0xF0 0x00 0x21 0x45 0x02 0x02 0xF7

SysEx implementation | Electra One Documentation

Page17

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x02 Configuration file

0xF7 SysEx closing byte

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x02 Configuration file

configuration-json-data JSON document with info about Electra (see below)

0xF7 SysEx closing byte

Detailed information about configuration-json-data is provided at Configuration format description

This request retrieves a list of all presets that are currently saved on the controller.

Response

An example of configuration-json-data

Get List of presets

Request

0xF0 0x00 0x21 0x45 0x01 0x02 configuration-json-data 0xF7

{
 "version": 2,
 "router": {
 ...
 },
 "presetBanks": [
 ...
],
 "usbHostAssigments": [
 ...
],
 "midiControl": [
 ...
]
}

SysEx implementation | Electra One Documentation

Page18

https://docs.electra.one/developers/confformat.html

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x04 Preset list

0xF7 SysEx closing byte

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x04 Preset list

preset-list-json-data JSON document with a list of presets

0xF7 SysEx closing byte

Response

An example of preset-list-json-data

0xF0 0x00 0x21 0x45 0x02 0x04 0xF7

0xF0 0x00 0x21 0x45 0x01 0x04 preset-list-json-data 0xF7

{
 "version":1,
 "current":{
 "bankNumber":5,
 "slot":0
 },
 "presets":[
 {
 "slot":0,
 "bankNumber":5,
 "name":"EMM Ctrl 10.52",
 "projectId":"4bJi5KIqgQB8th333Na7",
 "hasLua":true,
 "isPinned":false
 },
 {
 "slot":3,
 "bankNumber":5,

SysEx implementation | Electra One Documentation

Page19

This request retrieves information about the Preset slot and the preset stored in it.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x04 Preset slot

bankNumber Bank number (0 .. 5)

slot Slot (0 .. 11)

0xF7 SysEx closing byte

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x08 Preset slot

preset-slot-json-data JSON document with a preset slot information

Get Preset slot information

Request

Response

 "name":"VCV Rack 2",
 "projectId":"4rIzUF8a60kXiYsyvlTN",
 "hasLua":true,
 "isPinned":false
 },
 {
 "slot":11,
 "bankNumber":5,
 "name":"Rhodes Chroma",
 "projectId":"HxepQNRfBdIo0CyMyCqu",
 "hasLua":false,
 "isPinned":false
 }
]
}

0xF0 0x00 0x21 0x45 0x02 0x08 bankNumber slot 0xF7

0xF0 0x00 0x21 0x45 0x01 0x04 preset-list-json-data 0xF7

SysEx implementation | Electra One Documentation

Page20

0xF7 SysEx closing byte

A request to fetch the list of snapshots for a preset associated with a specific projectId.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x05 Snaphost list

snapshot-list-request-json-data

0xF7 SysEx closing byte

An example of preset-slot-json-data

Get List of snapshots

Request

{
 "version":1,
 "bankNumber":0,
 "slot":0,
 "name":"Demo preset",
 "projectId":"IJopUYMf2TW1PH7GNYxD",
 "hasLua":true,
 "isPinned":false,
 "files":[
 {
 "name":"preset.json",
 "md5":"b58f9ee9391b7e49f471fcbb2deb536c"
 },
 {
 "name":"main.lua",
 "md5":"7f00373c5818f254ef19a82217a18be0"
 },
 {
 "name":"devices.json",
 "md5":"5dec6bf7eebb098dda3d706fe6c2f115"
 }
]
}

0xF0 0x00 0x21 0x45 0x02 0x05 snaphost-list-request-json-data 0xF7

SysEx implementation | Electra One Documentation

Page21

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x05 Snapshot list

snapshot-list-json-data JSON document with a list of snapshots

0xF7 SysEx closing byte

A request to fetch snapshot data stored in a specific snapshot bank and slot.

An example of snapshot-list-request-json-data

Response

An example of snapshot-list-json-data

Get Snapshot data

Request

{
 "projectId": "IJopUYMf2TW1PH7GNYxD"
}

0xF0 0x00 0x21 0x45 0x01 0x05 snapshot-list-json-data 0xF7

{
 "version":1,
 "projectId":"IJopUYMf2TW1PH7GNYxD",
 "snapshots":[
 {
 "slot":0,
 "bankNumber":0,
 "name":"A0",
 "color":"FFFFFF",
 "filename":"s4380877.json"
 }
]
}

0xF0 0x00 0x21 0x45 0x02 0x03 snapshot-request-json-data 0xF7

SysEx implementation | Electra One Documentation

Page22

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x03 Snapshot data

snapshot-request-json-data

0xF7 SysEx closing byte

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x03 Snapshot data

snapshot-json-data JSON document with snapshot data

0xF7 SysEx closing byte

An example of snapshot-request-json-data

Response

An example of snapshot-json-data

{
 "projectId":"IJopUYMf2TW1PH7GNYxD",
 "bankNumber":0,
 "slot":0
}

0xF0 0x00 0x21 0x45 0x01 0x03 snapshot-json-data 0xF7

{
 "version":1,
 "projectId":"IJopUYMf2TW1PH7GNYxD",
 "parameters":[
 {
 "deviceId":1,
 "messageType":1,
 "parameterNumber":102,
 "midiValue":1
 },

SysEx implementation | Electra One Documentation

Page23

A request to fetch the list of captures for a preset associated with a specific projectId.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x31 Capture list

capture-list-request-json-data

0xF7 SysEx closing byte

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x31 Capture list

Get List of captures

Request

An example of capture-list-request-json-data

Response

 {
 "deviceId":2,
 "messageType":1,
 "parameterNumber":2,
 "midiValue":38
 }
]
}

0xF0 0x00 0x21 0x45 0x02 0x31 capture-list-request-json-data 0xF7

{
 "projectId": "IJopUYMf2TW1PH7GNYxD"
}

0xF0 0x00 0x21 0x45 0x01 0x31 capture-list-json-data 0xF7

SysEx implementation | Electra One Documentation

Page24

capture-list-json-data JSON document with a list of snapshots

0xF7 SysEx closing byte

A request to fetch capture data stored in a specific capture bank and slot.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x30 Capture data

capture-request-json-data

0xF7 SysEx closing byte

An example of capture-list-json-data

Get Capture data

Request

An example of capture-request-json-data

{
 "version":1,
 "projectId":"IJopUYMf2TW1PH7GNYxD",
 "captures":[
 {
 "slot":0,
 "bankNumber":0,
 "name":"A0",
 "color":"FFFFFF",
 "filename":"s5620078.mid",
 "midiInterface":"midiUsbDev",
 "port":1
 }
]
}

0xF0 0x00 0x21 0x45 0x02 0x30 capture-request-json-data 0xF7

{
 "projectId":"IJopUYMf2TW1PH7GNYxD",

SysEx implementation | Electra One Documentation

Page25

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x30 Capture data

capture-data packed 7-bit MIDI SMF data

0xF7 SysEx closing byte

A request to fetch a list of all devices currently connected to the controller’s USB Host port.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x02 Query data

0x10 USB Host device list

0xF7 SysEx closing byte

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

Response

Get USB Host devices

Request

Response

 "bankNumber":0,
 "slot":0
}

0xF0 0x00 0x21 0x45 0x01 0x30 capture-data 0xF7

0xF0 0x00 0x21 0x45 0x02 0x10 0xF7

0xF0 0x00 0x21 0x45 0x01 0x10 usb-host-devices-json-data 0xF7

SysEx implementation | Electra One Documentation

Page26

0x01 Data dump

0x10 USB Host devices

usb-host-devices-json-data List of USB Host devices in JSON format

0xF7 SysEx closing byte

The commands in this section are used to upload data to the Electra One controller. They allow you to send presets, Lua scripts, and
other data files directly to the device.

Since an upload is a command, the controller will respond with an ACK if the operation was successful, or a NACK if it failed.

The preset upload command is used to send a new preset to the Electra One MIDI controller. The preset is always uploaded to the
currently selected (active) preset slot.

Once the upload is complete, the preset is immediately activated and ready to use. An uploaded preset is stored as a
preset.json file in the preset slot.

0xF0 SysEx header byte

An example of usb-host-devices-json-data

Uploading data to the controller

Upload Preset

{
 "version":1,
 "devices":[
 {
 "manufacturer":"ESI",
 "product":"Xjam",
 "serialNumber":"123456",
 "vid":9587,
 "pid":54,
 "ports":[
 {
 "devicePort":1,
 "name":"Port 1",
 "electraPort":"port1"
 }
]
 }
]
}

0xF0 0x00 0x21 0x45 0x01 0x01 preset-json-data 0xF7

SysEx implementation | Electra One Documentation

Page27

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Upload data

0x01 Preset JSON file

preset-json-data bytes representing ASCII bytes of the preset file

0xF7 SysEx closing byte

Detailed information about preset-json-data is provided at Preset format description

The Lua script upload command is used to upload and execute a new Electra One Lua Extension script. The script is uploaded to
the currently selected (active) preset slot.

The Lua script refers to the main script file that runs when the preset is initialized. This command cannot be used to upload
additional Lua files. Any extra Lua files must be uploaded separately using the SysEx File Transfer API.

An uploaded Lua script is stored as a main.lua file in the preset slot.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Upload data

0x0C Lua Script file

script-source-code bytes representing a source code of the Electra One Lua script application

0xF7 SysEx closing byte

Detailed information about developing Lua script applications is provided at Electra One Lua script documentation.

The Device Overrides upload command is used to upload and replace the device definitions in the current preset. The overrides are
uploaded to the currently selected (active) preset slot.

A Device Override is a custom modification of the devices used in a preset. It allows users to change the MIDI ports and channels
assigned to devices without modifying the preset itself, making it easier to adapt presets to different setups or hardware
configurations.

An uploaded Devices definition is stored as a devices.json file in the preset slot.

0xF0 SysEx header byte

Upload Lua script

Upload Device overrides

0xF0 0x00 0x21 0x45 0x01 0x0C script-source-code 0xF7

0xF0 0x00 0x21 0x45 0x01 0x0F preset-devices-json-data 0xF7

SysEx implementation | Electra One Documentation

Page28

https://docs.electra.one/developers/presetformat.html
https://docs.electra.one/developers/luaext.html

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Upload data

0x0F Preset devices

preset-devices-json-data JSON document with a list of preset device overrides

0xF7 SysEx closing byte

The Persisted data upload command is used to upload and replace the JSON data that will be interpreted as a persisted Lua table in
the current preset. The data is uploaded to the currently selected (active) preset slot.

Persisted preset data is a JSON file that contains a Lua table previously saved using the persist() function. This data can be
loaded back into a Lua table using the recall() function. Preset developers can use this feature to store custom configuration
settings, runtime values, and other important data that should remain available even after the controller is restarted.

An uploaded Persisted data is stored as a data.json file in the preset slot.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Upload data

0x12 Persisted JSON data file

datafile-json-data JSON data saved with a Lua persist() function

0xF7 SysEx closing byte

The Performance upload command is used to upload and replace the performance JSON data in a specific preset slot on the
controller. The data is always uploaded to the currently selected (active) slot.

A Performance is a structured JSON file that defines a custom page made up of controls and macro controls that reference existing
controls within the preset. It allows users to build a personalized performance view with re-arranged layout, without modifying the
original preset.

An uploaded Performance data is stored as a performance.json file in the preset slot.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Upload data

Upload Persisted data

Upload Performace

0xF0 0x00 0x21 0x45 0x01 0x12 datafile-json-data 0xF7

0xF0 0x00 0x21 0x45 0x01 0x11 performance-json-data 0xF7

SysEx implementation | Electra One Documentation

Page29

0x11 Performance

performance-json-data Performance JSON data

0xF7 SysEx closing byte

The configuration upload call is meant to upload and apply a new Electra One configuration to the controller.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Upload data

0x02 Configuration file

configuration-json-data bytes representing ascii bytes of the configuration file

0xF7 SysEx closing byte

Detailed information about configuration-json-data is provided at Configuration format description

Persistent commands make permanent changes to the data stored on the controller. This means that any changes made using
persistent commands will still be in effect even after the controller is powered off and restarted.

The Remove Preset command permanently removes a preset identified by its bank number and slot.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x05 Remove command

0x01 Preset

bank-number an identifier of the preset bank (0 .. 5)

slot an identifier of the preset slot (0 .. 11)

0xF7 SysEx closing byte

Upload Configuration

Persistent commands

Remove Preset

0xF0 0x00 0x21 0x45 0x01 0x02 configuration-json-data 0xF7

0xF0 0x00 0x21 0x45 0x05 0x01 bank-number slot 0xF7

SysEx implementation | Electra One Documentation

Page30

https://docs.electra.one/developers/confformat.html

The Remove Lua Script command permanently deletes the main Lua script file associated with a specific bank number and slot.
This command cannot be used to remove additional files; to delete those, use the Remove Preset Slot files command instead.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x05 Remove command

0x0C Lua script

bank-number an identifier of the preset bank (0 .. 5)

slot an identifier of the preset slot (0 .. 11)

0xF7 SysEx closing byte

The Remove Configuration command permanently deletes the configuration file from the controller.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x05 Remove command

0x02 Configuration file

0xF7 SysEx closing byte

The Remove Snapshot command permanently deletes a snapshot from the controller.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x05 Remove command

Remove Lua script

Remove Config

Remove Snapshot

0xF0 0x00 0x21 0x45 0x05 0x0C bank-number slot 0xF7

0xF0 0x00 0x21 0x45 0x05 0x02 0xF7

0xF0 0x00 0x21 0x45 0x05 0x06 snapshot-id-json-data 0xF7

SysEx implementation | Electra One Documentation

Page31

0x06 Snapshot

snapshot-id-json-data Snapshot identification JSON data

0xF7 SysEx closing byte

The Remove Capture command permanently deletes a capture from the controller.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x05 Remove command

0x32 Capture

capture-id-json-data Snapshot identification JSON data

0xF7 SysEx closing byte

The Remove Preset command permanently removes a preset identified by its bank number and slot.

An example of the snapshot-json-data

Remove Capture

An example of the capture-json-data

Clear Preset slot

{
 "projectId": "SCI1mU1v6ojnm8IojuhY",
 "bankNumber": 2,
 "slot": 5
}

0xF0 0x00 0x21 0x45 0x05 0x06 capture-id-json-data 0xF7

{
 "projectId": "SCI1mU1v6ojnm8IojuhY",
 "bankNumber": 0,
 "slot": 0
}

SysEx implementation | Electra One Documentation

Page32

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x05 Remove command

0x08 Preset slot

bank-number an identifier of the preset bank (0 .. 5)

slot an identifier of the preset slot (0 .. 11)

0xF7 SysEx closing byte

The Update Snapshot command updates the attributes of an existing snapshot.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x04 Update command

0x06 Snapshot

snapshot-json-data Snapshot JSON data

0xF7 SysEx closing byte

The Update Capture command updates the attributes of an existing capture.

Update Snapshot

An example of the snapshot-json-data

Update Capture

0xF0 0x00 0x21 0x45 0x05 0x01 bank-number slot 0xF7

0xF0 0x00 0x21 0x45 0x04 0x06 snapshot-json-data 0xF7

{
 "projectId": "SCI1mU1v6ojnm8IojuhY",
 "bankNumber": 0,
 "slot": 5,
 "name": "House piano",
 "color": "E4660E"
}

SysEx implementation | Electra One Documentation

Page33

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x04 Update command

0x06 Capture

capture-json-data Capture JSON data

0xF7 SysEx closing byte

The Swap Snapshots command exchanges the snapshots between two snapshot slots. If one of the slots is empty, the operation
becomes a simple move instead of a swap.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x06 Swap command

0x06 Snapshot

snapshot-ids-json-data

0xF7 SysEx closing byte

An example of the capture-json-data

Swap Snapshots

An example of the snapshot-json-data

0xF0 0x00 0x21 0x45 0x04 0x06 capture-json-data 0xF7

{
 "projectId": "SCI1mU1v6ojnm8IojuhY",
 "bankNumber": 1,
 "slot": 4,
 "name": "Synths bank",
 "color": "DD1530"
}

0xF0 0x00 0x21 0x45 0x06 0x06 snapshot-ids-json-data 0xF7

SysEx implementation | Electra One Documentation

Page34

The Swap Captures command exchanges the captures between two capture slots. If one of the slots is empty, the operation becomes
a simple move instead of a swap.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x06 Swap command

0x32 Capture

capture-ids-json-data

0xF7 SysEx closing byte

Runtime commands change how the controller behaves while it’s running, but these changes are not saved and will be lost after a
restart.

The Preset lot switch command changes the active preset slot. If the selected slot contains a preset, it will be loaded. If the slot is
empty, it becomes the active slot and can be used to load a new preset.

Swap Captures

An example of the capture-json-data

Runtime commands

Switch Preset slot

{
 "projectId": "SCI1mU1v6ojnm8IojuhY",
 "fromBankNumber": 0,
 "fromSlot": 5,
 "toBankNumber": 0,
 "toSlot": 4
}

0xF0 0x00 0x21 0x45 0x06 0x06 capture-ids-json-data 0xF7

{
 "projectId": "SCI1mU1v6ojnm8IojuhY",
 "fromBankNumber": 0,
 "fromSlot": 0,
 "toBankNumber": 1,
 "toSlot": 0
}

SysEx implementation | Electra One Documentation

Page35

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x09 Switch command

0x08 Preset slot

bank-number an identifier of the preset bank (0 .. 5)

slot an identifier of the preset slot (0 .. 11)

0xF7 SysEx closing byte

The Load Preloaded preset command copies a preloaded preset into a preset slot and activates it. This allows the controller to
quickly load and switch to a prepared preset without using standard upload procedures.

Preloaded presets are stored in special location on the controller. Users can upload presets to these locations either by using the
USB mass storage mode in the bootloader or by using the SysEx File Transfer API.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x04 Update command

0x08 Preset slot

preset-slot-json-data Preset slot update JSON data

0xF7 SysEx closing byte

The Switch Page command is used to change the active page.

Load Preloaded preset

An example of the preset-slot-json-data

Switch Page

0xF0 0x00 0x21 0x45 0x09 0x08 bank-number slot 0xF7

0xF0 0x00 0x21 0x45 0x04 0x08 preset-slot-json-data 0xF7

{
 "bankNumber": 5,
 "slot": 1,
 "preset": "xot/ableton/Cabinet"
}

SysEx implementation | Electra One Documentation

Page36

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x09 Switch command

0x0A Page

page-number an identifier of the page (0 .. 11)

0xF7 SysEx closing byte

The Switch Control set command changes the currectly selected set of knobs assigned to the on-sreen controls.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x09 Switch command

0x0B Control Set

control-set-id an identifier of the page (0 .. 2)

0xF7 SysEx closing byte

The Set Preset Slot command changes the currently selected preset bank and slot. However, it does not activate or load the preset in
that slot, unlike the Switch Preset Slot command. Instead, Set Preset Slot simply arms the slot as selected for subsequent operations,
such as uploading preset files.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x09 Update runtime command

0x08 Preset slot

bank-number an identifier of the preset bank (0 .. 5)

Switch Control Set

Set Preset slot

0xF0 0x00 0x21 0x45 0x09 0x0A page-number 0xF7

0xF0 0x00 0x21 0x45 0x09 0x0B control-set-id 0xF7

0xF0 0x00 0x21 0x45 0x14 0x08 bank-number slot 0xF7

SysEx implementation | Electra One Documentation

Page37

slot an identifier of the preset slot (0 .. 11)

0xF7 SysEx closing byte

The Set Snapshot Slot command changes the currently selected snapshot bank and slot. The selected slot is then armed for use with
subsequent snapshot operations.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x09 Update runtime command

0x09 Snapshot slot

snapshot-slot-json-data JSON document with data to identify the snapshot slot

0xF7 SysEx closing byte

The Set Capture Slot command changes the currently selected capture bank and slot. The selected slot is then armed for use with
subsequent capture operations.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x09 Update runtime command

0x09 Snapshot slot

capture-slot-json-data JSON document with data to identify the capture slot

Set Snapshot slot

An example of snapshot-slot-json-data

Set Capture slot

0xF0 0x00 0x21 0x45 0x14 0x09 snapshot-slot-json-data 0xF7

{
 "projectId":"4bJi5KIqgQB8th333Na7",
 "bankNumber":0,
 "slot":3
}

0xF0 0x00 0x21 0x45 0x14 0x33 capture-slot-json-data 0xF7

SysEx implementation | Electra One Documentation

Page38

0xF7 SysEx closing byte

The Run Lua Command executes arbitrary Lua commands, effectively serving as an API endpoint for controlling Electra One
presets from external devices and applications.

It allows you to remotely manage Electra One presets using Lua commands, offering a powerful way to interact with the controller
from external sources. The maximum allowed length of a Lua command is 65,535 bytes.

However, we recommend keeping commands short — commands shorter than 65 bytes are executed significantly faster than longer
ones.

To optimize performance, it is better to use this SysEx call to trigger Lua functions defined in a previously uploaded Lua script,
rather than sending large blocks of arbitrary Lua code.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x08 Execute command

0x0D Function

lua-command-text ASCII bytes representing the Lua command

0xF7 SysEx closing byte

For backwards compatibility, the follwoing message structure is supported too:

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x08 Execute command

An example of capture-slot-json-data

Execute Lua command

{
 "projectId":"4bJi5KIqgQB8th333Na7",
 "bankNumber":5,
 "slot":11
}

0xF0 0x00 0x21 0x45 0x08 0x0D lua-command-text 0xF7

0xF0 0x00 0x21 0x45 0x08 0x0C lua-command-text 0xF7

SysEx implementation | Electra One Documentation

Page39

0x0C Lua file

lua-command-text ASCII bytes representing the Lua command

0xF7 SysEx closing byte

The lua-command-text is free form string containing Lua command to be executed. The maximum length is limited to 128
characters. It is recommended to call predefined functions.

or

The Reload Preset Slot command reinitializes and restarts the preset stored in the specified preset slot. The preset instance currently
running in that slot will be terminated. If available, associated Lua scripts, Device Overrides, and Performance data will also be
reinitialized.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x08 Execute command

0x08 Preset slot

bankNumber Bank number (0 .. 5)

slot Slot (0 .. 11)

0xF7 SysEx closing byte

A call to update the name, color, and visibility of a control. These changes are applied at runtime only, which means they will be
lost when the Electra One is powered off.

An example of the lua-command-text

Reload Preset slot

Update control

hideControl (1)

print ("Hello MIDI world!")

0xF0 0x00 0x21 0x45 0x08 0x08 0xF7

0xF0 0x00 0x21 0x45 0x14 0x07 control-id-lsb control-id-msb control-upadate-json-data 0xF7

SysEx implementation | Electra One Documentation

Page40

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x14 Update runtime command

0x07 Control

control-id-lsb a LSB of a controlId

control-id-msb a MSB of a controlId

control-update-json-data

0xF7 SysEx closing byte

The controlId is split into two 7-bit parts: a most significant byte (MSB) and a least significant byte (LSB), using the following
logic:

The control-update-json-data may include up to four optional attributes: name , color , visibility , and value . When the
control update command is received, any provided attributes will be applied to the control. You only need to include the attributes
you want to change — all others can be left out.

Updating the value attribute allows you to set value.text only, which is equivalent to using the SysEx call for overriding the
value text.

change all attrinbutes:

one attribute only:

overriding a value text:

An example of the control-json-data

control-id-msb = controlId >> 7
control-id-lsb = controlId & 0x7F

{
 "name": "Track 1",
 "color": "FFFFFF",
 "visible": true
}

{
 "name": "Track 2"
}

{
 "value": {
 "id": "value",
 "text": "6.2dB"

SysEx implementation | Electra One Documentation

Page41

Note, when overriding a value text the "id": "value" is not required for single value controls, such as faders, pads, and relative
controls. The text is text string of printable ASCII characters, maximum length is 15 characters. Setting the text string with 0
bytes length cancels the value override. When cancelled, the controller will display the current value according to its settings.

The Override Value Text command replaces the control’s current displayed value with custom text. It gives developers full control
over what is shown on the screen, which is especially useful when working with Relative Control Change messages.

The custom text also overrides the output from Lua Value formatters.

Although value texts can also be overridden using the Control Update command, the Override Value Text command is a more
performance-optimized option, as it avoids the overhead of JSON parsing and valueId translation.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x14 Update runtime command

0x0E Override text value

control-id-lsb a LSB of a controlId

control-id-msb a MSB of a controlId

numeric-value-id a numeric identifier of the value within the control

text a text string to be displayed as value

0xF7 SysEx closing byte

The controlId is split into two 7-bit parts: a most significant byte (MSB) and a least significant byte (LSB), using the following
logic:

The numeric-value-id identifies Electra One’s MIDI port as follows. Note: the value Ids must be selected according to the type
of control being used.

0x00 default value of single value controls (fader, pads, and relative controls)

0x01 attack, l1, x

0x02 decay, hold, release, r1, y

0x03 sustain, decay, break, release, l2

0x04 release, sustain, slope, r2

Override value text

 }
}

0xF0 0x00 0x21 0x45 0x14 0x0E control-id-lsb control-id-msb numeric-value-id text 0xF7

control-id-msb = controlId >> 7
control-id-lsb = controlId & 0x7F

SysEx implementation | Electra One Documentation

Page42

https://docs.electra.one/developers/luaext.html#value-formatters

0x05 release, sustain, l3

0x06 release, r3

0x07 l4

0x08 r4

The text is text string of printable ASCII characters, maximum length is 15 characters. Setting the text string with 0 bytes
length cancels the value override. When cancelled, the controller will display the current value according to its settings.

The Set Bottom Bar Text command replaces the default text shown in the status bar at the bottom of the screen. The custom text
remains visible until the command is called again with a string of 0 bytes in length, which clears the text and restores the default
display.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x14 Update runtime command

0x77 Override text value

text a text string to be displayed as value

0xF7 SysEx closing byte

The text is text string of printable ASCII characters, maximum length is 40 characters. Setting the text string with 0 bytes
length cancels the value override. When cancelled, the controller will display the current value according to its settings.

The Set Event Port command sets the MIDI port used to transmit event notifications triggered by user actions on the controller
(e.g., page switching).

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x14 Update runtime command

0x7B Select the port to transmit UI driven events on

port-number a MIDI port to be used

0xF7 SysEx closing byte

Set Bottom Bar text

Set Events MIDI port

0xF0 0x00 0x21 0x45 0x14 0x77 text 0xF7

0xF0 0x00 0x21 0x45 0x14 0x7B port-number 0xF7

SysEx implementation | Electra One Documentation

Page43

The port-number identifies Electra's MIDI port as follows:

0x00 Port 1

0x01 Port 2

0x02 CTRL

The Subscribe Events command tells the controller which SysEx event messages should be sent out when specific events occur.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x14 Update runtime command

0x79 Event subscriptions

event-flags a byte where each bit represents specific type of event

0xF7 SysEx closing byte

The event-flags a byte with the following bits (flags). The individual flags must be ORed to produce the final byte value:

0x00 None

0x01 (bit 0) Page events

0x02 (bit 1) Control Set events

0x04 (bit 2) USB Host events

0x08 (bit 3) Pots events

0x10 (bit 4) Touch events

0x20 (bit 5) Button events

0x40 (bit 6) Window events

Note, currently only Page events and Pots events are supported.

to reset the subscribed events, send a message with the flags set to 0x00 (None).

This system call is used to control whether Electra One sends debugging log messages. The command sets a non-volatile flag inside
the controller, meaning the logger's status remains saved even after the controller is powered off.

However, startup log messages are always sent, regardless of the logger's enabled or disabled state.

Debug log messages generated by the Lua print() function are always sent out.

Subscribe Events

Control Logger Output

0xF0 0x00 0x21 0x45 0x14 0x79 event-flags 0xF7

SysEx implementation | Electra One Documentation

Page44

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7F System call

0x7D Logger

status desired state of the logger (see below)

log-level level of verbosity of log messages (0 .. 3)

0xF7 SysEx closing byte

List of possible status values:

0x00 disable the logger

0x01 enable the logger

The log-level sets the verbosity of log messages sent by the Electra One controller. Higher log levels add extra messages to
stream of log messages. The log-level parameter is ignored when the status parameter is set to 0x00 .

0x00 critical messages (that cannot be disabled)

0x01 warning messages

0x02 informative messages

0x03 tracing messages

The Set Log Port command sets the USB device MIDI port used to transmit log messages. By default, log messages are sent to the
Electra Controller CTRL port.

Note: Although log messages are considered a type of controller event, they do not follow the Event Port settings. Instead, they use
their own dedicated port, which is configured using this SysEx command.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x14 System call

0x7D Logger

port-number a MIDI port to be used

reserved an optional parameter. It is not currently used.

Set Logger MIDI port

0xF0 0x00 0x21 0x45 0x7F 0x7D status 0x00 0xF7

0xF0 0x00 0x21 0x45 0x14 0x7D port-number reserved 0xF7

SysEx implementation | Electra One Documentation

Page45

0xF7 SysEx closing byte

The port-number identifies Electra's MIDI port as follows:

0x00 Port 1

0x01 Port 2

0x02 CTRL

The Window Repaint command provides control over the graphic component repainting process. It can be used to accumulate
multiple individual repaint requests into a single repaint operation, improving overall performance.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7F System call

0x7A Window

command a command to execute

reserved an optional parameter. It is not currently used.

0xF7 SysEx closing byte

The command must be one of the following:

0x00 Stop the window repainting process

0x01 Repaint the window and resume the window repainting process

Note: When repaints are stopped, the controller does not update any graphics on the screen and may appear unresponsive.

The Debig command allows developers to enable or disable Lua script debugging. The feature is in its early initial phase. When
enabled, the controller will report every single executed line of the Lua script code using the logger text message. The feature is
intended to implement a full blown Lua debugger in the future.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

Control Window repaints

Control Debugging

0xF0 0x00 0x21 0x45 0x7F 0x7A command reserved 0xF7

0xF0 0x00 0x21 0x45 0x7C command 0xF7

SysEx implementation | Electra One Documentation

Page46

0x7C Debug

command a command to execute

0xF7 SysEx closing byte

The command must be one of the following:

0x00 Disable debugging

0x01 Enable debugging

The Set MIDI Learn command enables or disables the MIDI Learn functionality on the controller. When enabled, the controller
sends MIDI Learn event messages back to the host for all incoming MIDI messages.

While MIDI Learn is active, incoming MIDI messages are not processed in the standard way.

The MIDI Learn event message is described in the Controler events section.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x03 Midi Learn

status Desired state of the MIDI learn functionality (see below)

0xF7 SysEx closing byte

List of possible status values:

0x00 disable the MIDI learn

0x01 enable the MIDI learn

The Reboot command restarts the controller.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7F System call

0x78 Reboot

Control Midi learn

Reboot

0xF0 0x00 0x21 0x45 0x03 status 0xF7

0xF0 0x00 0x21 0x45 0x7F 0x78 0xF7

SysEx implementation | Electra One Documentation

Page47

0xF7 SysEx closing byte

Controller events are sent from the controller to the host computer. Their primary purpose is to keep the host informed about
important actions or changes occurring on the controller, such as page switches, preset changes, knob touches, and device
connections.

By default, controller events that are triggered by user actions (not initiated by SysEx API commands) are transmitted through the
Electra Controller CTRL MIDI port. This default behavior can be changed using the Set Event Port command, allowing

developers to route these user-driven event messages to a different USB device MIDI port if needed — keeping event traffic
separated from other MIDI streams.

However, events triggered as a response to SysEx API commands are always sent back over the same MIDI port on which the
original SysEx API command was received. This ensures that responses remain properly linked to their initiating requests, even if a
custom event port has been configured.

Acknowledged. Informs the host that the last operation was successfully completed.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7E Controller event

0x01 ACK (acknowledged)

transaction-id-lsb transaction Id LSB

transaction-id-msb transaction Id MSB

0xF7 SysEx closing byte

Where:

transaction-id-lsb is the least significant 7 bits (LSB) of the transaction Id

transaction-id-msb is the most significant 7 bits (MSB) of the transaction Id

The Transaction Id is split into two 7-bit parts: a most significant byte (MSB) and a least significant byte (LSB), using the
following logic:

Controller events

ACK

0xF0 0x00 0x21 0x45 0x7E 0x01 transaction-id-lsb transaction-id-msb 0xF7

transaction-id-msb = transactionId >> 7
transaction-id-lsb = transactionId & 0x7F

SysEx implementation | Electra One Documentation

Page48

If a Transaction Id is included in the Command, the corresponding ACK or NACK response will also include the same two
bytes, allowing you to match the response to the original command.

The ACK with transaction Id 4183 should be transferred as

If no Transaction ID was included in the request, a Transaction ID of 0 will be present in the ACK response.

Not acknowledged. Informs the host that the last operation did not succeed.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7E Controller event

0x00 NACK (not acknowledged)

transaction-id-lsb transaction Id LSB

transaction-id-msb transaction Id MSB

0xF7 SysEx closing byte

Where:

transaction-id-lsb is the least significant 7 bits (LSB) of the transaction Id

transaction-id-msb is the most significant 7 bits (MSB) of the transaction Id

The Transaction Id is split into two 7-bit parts: a most significant byte (MSB) and a least significant byte (LSB), using the
following logic:

If a Transaction Id is included in the Command, the corresponding ACK or NACK response will also include the same two
bytes, allowing you to match the response to the original command.

The NACK with transaction Id 4183 should be transferred as

Example

NACK

Example

0xF0 0x00 0x21 0x45 0x7E 0x01 0x77 0x20 0xF7

0xF0 0x00 0x21 0x45 0x7E 0x00 transaction-id-lsb transaction-id-msb 0xF7

transaction-id-msb = transactionId >> 7
transaction-id-lsb = transactionId & 0x7F

SysEx implementation | Electra One Documentation

Page49

If no Transaction ID was included in the request, a Transaction ID of 0 will be present in the NACK response.

The Preset switch event informs the host that the user has changed the preset on the controller.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7E Controller event

0x02 Preset switch

bank-number Current bank number (0 .. 5)

slot Current preset slot (0 .. 11)

0xF7 SysEx closing byte

The Snapshot list change Event informs the host that the list of snapshots has been modified. It is sent whenever a snapshot is
added, updated, or removed.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7E Controller event

0x03 Snapshot list change

0xF7 SysEx closing byte

The Capture list change Event informs the host that the list of capture has been modified. It is sent whenever a snapshot is added,
updated, or removed.

Preset switch

Snapshot list change

Capture list change

0xF0 0x00 0x21 0x45 0x7E 0x00 0x77 0x20 0xF7

0xF0 0x00 0x21 0x45 0x7E 0x02 bank-number slot 0xF7

0xF0 0x00 0x21 0x45 0x7E 0x03 0xF7

0xF0 0x00 0x21 0x45 0x7E 0x31 0xF7

SysEx implementation | Electra One Documentation

Page50

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7E Controller event

0x31 Capture list change

0xF7 SysEx closing byte

The Pot touch event informs the host when the user touches or releases a potentiometer (knob) on the controller.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7E Controller event

0x0A Pot touch activity

pot-id an identifier of the pot (0 .. 11)

control-id-lsb a LSB of a controlId

control-id-msb a MSB of a controlId

touched is set to true for initial touch, and false when pot is released

0xF7 SysEx closing byte

The Preset list change event informs the host that the list of presets has been modified. It is sent whenever a preset is added,
updated, or removed.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7E Controller event

0x05 Preset list change

0xF7 SysEx closing byte

Pot touch

Preset list change

Page switch

0xF0 0x00 0x21 0x45 0x7E 0x0A pot-id control-id-lsb control-id-msb touched 0xF7

0xF0 0x00 0x21 0x45 0x7E 0x05 0xF7

SysEx implementation | Electra One Documentation

Page51

The Page switch event informs the host that the user has changed the active page on the controller.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7E Controller event

0x06 Page switch

page-id Current page number as defined in the preset (0 .. 11)

0xF7 SysEx closing byte

The Control Set switch event informs the host that the user has changed the active Control Set on the controller.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7E Controller event

0x07 Control set switch

control-set-number Current active control Set (0 .. 2)

0xF7 SysEx closing byte

The Preset bank switch event informs the host that the user has changed the active preset bank on the controller.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7E Controller event

0x08 preset bank switch

preset-bank-number Current page number (0 .. 5)

Control Set switch

Preset bank switch

0xF0 0x00 0x21 0x45 0x7E 0x06 page-number 0xF7

0xF0 0x00 0x21 0x45 0x7E 0x07 control-set-number 0xF7

0xF0 0x00 0x21 0x45 0x7E 0x08 preset-bank-number 0xF7

SysEx implementation | Electra One Documentation

Page52

0xF7 SysEx closing byte

Informs the host that a new device was connected or an existing device was disconnected from the USB Host port.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7E Controller event

0x08 USB Host change

0xF7 SysEx closing byte

Informs the host that the user made change regarding the snapshots. Upon receiving this event the host might want to query the
snapshot list information.

- `0xF0` SysEx header byte - `0x00` `0x21` `0x45` Electra One MIDI manufacturer Id - `0x7E` Controller event -

`0x03` Snapshot change - `0xF7` SysEx closing byte

Informs the host that the user changed current snapshot bank.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7E Controller event

0x04 Snapshot bank switch

bank-number Snapshot bank (0 .. 11)

0xF7 SysEx closing byte

USB Host change notification

Snapshot change

Snapshot bank switch

0xF0 0x00 0x21 0x45 0x7E 0x08 0xF7

0xF0 0x00 0x21 0x45 0x7E 0x03 0xF7

0xF0 0x00 0x21 0x45 0x7E 0x04 bank-number 0xF7

SysEx implementation | Electra One Documentation

Page53

When Electra has the MIDI learn enabled it sends a MIDI message with description of MIDI messages received on user ports to.

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x03 Midi learn

midilearn-json-data a JSON data that describe detected MIDI message

0xF7 SysEx closing byte

non-SysEx:

SysEx:

A log message is a text that is transmitted to the host computer in order to provide the user with information what is happening in
the controller. The log messages are generated either by the firmware or user's Lua script.

0xF0 SysEx header byte

Midi learn info

An example of midilearn-json-data

Log message

0xF0 0x00 0x21 0x45 0x03 midilearn-json-data 0xF7

{
 "port": 0,
 "msg": "cc7",
 "channel": 2,
 "parameterId": 10,
 "value": 119
}

{
 "port": 0,
 "msg": "sysex",
 "data": [67, 32, 0]
}

0xF0 0x00 0x21 0x45 0x7F 0x00 log-message 0xF7

SysEx implementation | Electra One Documentation

Page54

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7F System call

0x00 Log message

log-message ASCII bytes representing the log message

0xF7 SysEx closing byte

The log-message is a text string that start with a number representing milliseconds from the start of the controller, followed by
the space, and then the text of the message.

An example of log-message

147362 ElectraApp: preset successfully loaded

SysEx implementation | Electra One Documentation

Page55

