SysEx implementation | Electra One Documentation

SysEx implementation

The Electra One MIDI controller can be configured, programmed, and fully controlled using MIDI SysEx (System Exclusive)
messages. This document explains how SysEx messages are used to communicate with the controller — including how to send

data, request information, and manage its behavior — all through the USB MIDI interface.
In fact, the full Electra One web-based editor running app.electra.one is built entirely on top of this very same SysEx API.

Whether you're building your own tools or integrating Electra One into a larger MIDI setup, this guide will help you understand the

key SysEx commands and how to use them effectively.

Note

To utilize the SysEx Implementation described in this document, you must have Firmware version 4.0 or later installed.

Byte Notation

All byte values in this document are written in hexadecimal format, using the @xNN notation, where NN is a value between 00

and FF .

Unless otherwise noted, all numbers should be interpreted as hexadecimal. If decimal notation is used, it will be clearly stated.

Manufacturer SysEx Id

Every SysEx message must include a manufacturer Id to identify which device or brand the message is intended for. This helps

prevent conflicts and ensures that messages are correctly interpreted by the right device.

Electra One uses the official Manufacturer SysEx Id assigned by the MIDI Association to Electra One s.r.0.:

0x00 0x21 0x45

This Id must appear at the beginning of every SysEx message sent to an Electra One controller.

The Management Port

Electra One SysEx messages can be sent through any of the controller’s USB device MIDI ports. However, it is recommended to
use the Electra Controller CTRL port whenever possible. Using this dedicated port helps separate Electra’s management

SysEx messages from regular MIDI traffic.

On some systems, this port may appear under a different name:

* Windows: MIDIIN3

e Linux: PORT 3
Responses to requests are always sent back through the same USB port the request came from.

Pagel

SysEx implementation | Electra One Documentation

Event notifications (triggered by user interaction on the controller) are sent by default to the Electra Controller CTRL port.

This behavior can be changed — see Set the MIDI port for UI events for more details.

Request / Response Handshake

Electra One uses a simple request—response protocol for exchanging data over SysEx.
Each message sent to the controller expects a specific type of response. This handshake ensures reliable communication and lets

you confirm whether the request was received and handled correctly.

Requests sent to Electra One fall into two main categories:

e Data Queries — Used to request information from the controller.

These requests do not modify any state or data on the device. They only fetch and return data.

e Commands — Used to perform actions or change data on the controller.

These requests do modify the controller’s internal state or configuration.

When a Data Query is sent, Electra One responds with a message containing the requested data in JSON format.

When a Command is sent, Electra One replies with either:

e ACK (Acknowledged) — The command was successfully received and executed.

e NACK (NotAcknowledged) — The command failed (e.g., due to incorrect structure or invalid data).

ACK and NACK responses let you know if the controller accepted your request, so your application can respond in the right way.

Transaction Id

There may be situations where multiple Commands are sent at the same time.
In these cases, it can be difficult to tell which ACK or NACK response belongs to which request. To solve this, Commands can
optionally include a Transaction Id . This Id helps you track and match each response to its original request — especially

useful when multiple requests are being processed asynchronously or out of order.

If used, the Transaction Id must be inserted immediately after the Manufacturer SysEx Id using the following format:

0x00 OxNN OxMM

Where:

e OxNN is the least significant 7 bits (LSB) of the transaction Id

e @xMM is the most significant 7 bits (MSB) of the transaction Id

Ifa Transaction Id is included in the Command, the corresponding ACK or NACK response will also include the same two

bytes, allowing you to match the response to the original command. See, ACK / NACK for more details.

Example

The transaction Id 4183 should be transferred as

0x00 0x77 0x20

Page2

SysEx implementation | Electra One Documentation

Electra One firmware versions earlier than 4.0.0 do not support Transaction Ids. If you include a Transaction Id with a
command on older firmware, it will not work as expected. For this reason, your software should always check the firmware version

before using this feature.

Operation and Resource Bytes

After the Manufacturer SysEx Id (and optional Transaction Id ,ifused), the next two bytes in the message define:

I. The Operation — what kind of action should be performed

2. The Resource — what type of data the action should apply to

These two bytes are essential for telling the controller exactly what you're asking it to do and where the action should be applied.

Operations

The Operation byte tells Electra One whether the request is a Data query. or a Command that

The operation types include:

e upload —upload new data (e.g. a preset or Lua script)
° request - query data stored on the controller

e create - create a data resource (eg. snapshot)

e update —make a persitent change to a data resource

e remove —remove data permanently

e switch - change active resource

e updateRuntime - update run-time volatile data

There are additional special operations, which will be described later in this document.

Resource Byte

The second byte identifies the data resource the operation should target.

It tells the controller what kind of data is being queried or changed.

Some example resources include:

e Preset - the entire preset configuration

e Control - asingle control within a preset

e System - system-level settings or configuration
e File —afile or file location

* Device - information about connected MIDI devices

There are many types of data resources available. You'll find their descriptions later in this document.

By combining the Operation and Resource bytes, your message tells Electra One exactly:

¢ What to do (operation)
¢ And what to do it with (resource)

Page3

SysEx implementation | Electra One Documentation

Payload

Most operations require additional data to work, for example, a preset in JSON format or the number of a preset slot to activate.

This extra data is called the Payload, and it comes immediately after the Operation and Resource bytes in the SysEx message.

Depending on the type of operation, the payload format can vary. Some operations require binary payloads, others require data
formatted as JSON.

While handling different payload formats may add a bit of complexity for software developers using the SysEx API, this design

greatly improves performance by avoiding unnecessary JSON parsing when it's not needed.

When transferring JSON payload, the individual bytes must be transferred using their ASCII codes and stay strickly in 7-bit range.

Message Structure

Now that we’ve covered all the components of a message, we can take a look at the overall structure of a SysEx API message.

Without Transaction Id

A SysEx API message without a Transaction Id:

OxF@ manufacturer—id operation resource payload OxF7

for example a Command with binary data Payload:

OXFO 0x00 0x21 0x45 0x02 0x05 0x01 0x00 0x05 OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x05 Operation Remove

0x01 Data resource Preset

0x00 0x05 Payload (bankNumber and slot number)

0xF7 SysEx closing byte

or a Command with mixed binary and JSON data Paylaod:

OXFO 0x00 0x21 0x45 0x14 0x07 0x02 0x00 {"name":"Track2"} OxF7

0xF@ SysEx header byte
0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x14 Operation Update runtime

Page4

SysEx implementation | Electra One Documentation

0x07 Data resource Control
0x00 ©0x05 {"name":"Track2"} Payload (control Id LSB, control Id MSB, JSON data)
0xF7 SysEx closing byte

upon processing the command, the Electra One controller will respond with the ACK or NACK according to the result of the

operation.

an example of the ACK response:

OXFO 0x00 0x21 0x45 OX7E 0x01 0x00 0x00 OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
Ox7E Status

0x01 Acknowledged

0x00 0x00 No transaction Id available

0xF7 SysEx closing byte

With Transaction Id

A SysEx API message with a Transaction Id:

0xF@ manufacturer-id 0x00 transaction-id operation resource payload OxF7

for example a Command with binary data Payload:

OXFO 0x00 0x21 0x45 0x00 0x77 0x20 0x02 0x05 0x01 0x00 0x05 OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x00 Transaction Id flag

0x77 0x20 Transaction Id 4183

0x05 Operation Remove

0x01 Data resource Preset

0x00 0x05 Payload (bankNumber and slot number)
0xF7 SysEx closing byte

Page5

SysEx implementation | Electra One Documentation

Upon processing the command, the Electra One controller will respond with either an ACK or NACK , depending on the result of

the operation. If a Transaction Id was included in the request, it will be echoed back in the ACK / NACK response.

an example of the NACK response:

OxXFO 0x00 0x21 @x45 OX7E 0x00 0x77 0x20 OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
Ox7E Status

0x00 Not-Acknowledged

0x77 ©0x20 Transaction Id 4183

0xF7 SysEx closing byte

Controller events

A Controller Event is a special type of SysEx message that Electra One sends out when something important occurs. These events

are typically triggered by user actions or as part of handling incoming SysEx messages or external MIDI control commands.

The controller may send an event message when:

e Switching a page

e Switching a preset

¢ Changing the Control Set

e Touching any knob

e Connecting a USB device

e Acknowledging a command

¢ Sending a log message at the user's request

Some event messages are always sent when the event occurs. Others require the user (or software) to explicitly subscribe in order to

receive them. Details on which events require subscriptions — and how to subscribe — are provided in the sections below.

Querying data from the controller

This section covers the set of queries used to retrieve information from the Electra One controller. The data returned may include

runtime information, static configuration, or files stored internally on the controller.

Get Electra info

The Electra One MIDI controller can provide information about its hardware and the currently loaded firmware upon request.

This call is useful when you need to check if the connected Electra One is working properly and to retrieve details about the

firmware it is running.

Page6

SysEx implementation | Electra One Documentation

For example, the Electra App and the Electra Editor use this call to verify that the controller is connected correctly and to display

the connection status indicator.

Request

OxXFO 0x00 0x21 0x45 0x02 Ox7F OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x7F Electra information

0xF7 SysEx closing byte

Response

OXFO 0x00 0x21 0x45 0x01 Ox7F info-json-data OxF7

0xF0@ SysEx header byte

0x00 ©0x21 0x45 FElectra One MIDI manufacturer Id

0x01 Data dump

0x7F Electra information

info-json-data JSON document with info about Electra (see below)

0xF7 SysEx closing byte

An example of info-json-data

{
"versionText":"v4.0.0",
"versionSeq":400000000,
"serial":"E02-5301787f",
"hwRevision":"3.0"

}

Get Run-time information

A request call to fetch the run-time information from the Electra firmware. Only the information about free memory is included at

the present time.

Page7

SysEx implementation | Electra One Documentation

Request

OxFO 0x00 0x21 0x45 0x02 OX7E OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x7E Run-time information

0xF7 SysEx closing byte

Response

OxFO 0x00 0x21 0x45 0x01 Ox7E runtime-json-data OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x7E Run-time information

runtime-json-data JSON document with info about run-time data

0xF7 SysEx closing byte

An example of runtime-json-data

{
"freePercentage": 85
¥
Get Preset

Get preset request retrieves the preset JSON stored in a specific preset slot on the controller. If no bank number or slot number is
provided, the controller will return the preset from the currently active slot. If both parameters are provided, the controller will fetch

the preset from the specified bank and slot.

A preset is stored asa preset.json file in the preset slot.

Request

Retrieve the JSON of the currently active preset:

Page8

SysEx implementation | Electra One Documentation

OXFO 0x00 0x21 0x45 0x02 0x01 OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x01 Preset file

0xF7 SysEx closing byte

Retrieve a preset by specifying its bank number and slot number:

OxFO 0x00 0x21 0x45 0x02 0x01 bankNumber slot OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x01 Preset file

bankNumber Bank number (0 .. 5)

slot Slot(0..11)

0xF7 SysEx closing byte

Response

OxFO 0x00 0x21 @x45 0x01 0x01 preset-json-data OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x01 Preset file

preset-json-data JSON document with info about Electra (see below)

0xF7 SysEx closing byte

Electra One MIDI controller responds with the SysEx message that has exactly the same format as the Preset upload message. Thus,

a SysEx message downloaded with the Get preset call can be used to upload the preset to Electra's active preset slot later on.

Detailed information about preset—json-data is provided at Preset format description

Page9

https://docs.electra.one/developers/presetformat.html

SysEx implementation | Electra One Documentation

An example of preset-json-data

{
"version": 2,
"name": "ADSR Test",
"projectId": "d8WjdwYrP31Ryyx8nEMF",
"pageS": [
g
"devices": [
g
"overlays": [
g
"groups": [
g
"controls": [
1
¥

Get Lua script

Get Lua script request retrieves the main Lua script in a specific preset slot on the controller. If no bank number or slot number is
provided, the controller will return the Lua script from the currently active slot. If both parameters are provided, the controller will

fetch the Lua script from the specified bank and slot.

The main Lua script refers to the script file that runs when the preset is initialized. This request only retrieves the main script, it

cannot be used to fetch additional Lua files. Any extra Lua files must be accessed separately using the SysEx File Transfer APL.

A Lua script is stored as a main. lua file in the preset slot.

Request

Retrieve the Lua script of the currently active preset:

OXFO 0x00 0x21 0x45 0x02 0x0C OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x0C Lua script file

0xF7 SysEx closing byte

Retrieve a Lua script by specifying its bank number and slot number:

Pagel0

SysEx implementation | Electra One Documentation

OxFO 0x00 0x21 0x45 0x02 0x0C bankNumber slot OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x0C Lua script file

bankNumber Bank number (0 .. 5)

slot Slot(0..11)

0xF7 SysEx closing byte

Response

OxFO 0x00 0x21 0x45 0x01 0x0C script-script-code OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer 1d

0x01 Data dump

0x0C Lua Script file

script-script—code bytes representing a script code of the Electra One Lua script application

0xF7 SysEx closing byte

Detailed information about developing Lua script applications is provided at Electra One Lua Extension documentation.

An example of script-script-code

—— Demo application

—— the Setup
clockCounter = 0@
beatEnabled = 0

—— User functions

function myPrint(text)
print("my Lua: " .. text)

end

—— Standard callbacks
function midi.onClock(midiInput)
if beatEnabled == 1 then
if math.mod(clockCounter, 24) == 0 then

Pagell

https://docs.electra.one/developers/luaext.html

SysEx implementation | Electra One Documentation

myPrint("midi beat: interface=" .. midiInput.interface)
end
end
clockCounter = clockCounter + 1
end

function onButtonDown(buttonId)
myPrint("button " .. buttonId .. " pressed")

if buttonId == BUTTON_1 then
myPrint("Beat enabled")
beatEnabled 1

elseif buttonId == BUTTON_4 then
myPrint("Beat disabled")
beatEnabled = 0

end
end

Get Device overrides

This request retrieves the Device overrides stored in a specific preset slot on the controller. If no bank or slot number is provided,
the controller will return the overrides from the currently active preset. If both parameters are provided, it will return the overrides

from the specified bank and slot.

A Device override is a custom modification of the devices used in a preset. It allows users to change the MIDI ports and channels
assigned to devices without modifying the preset itself, making it easier to adapt presets to different setups or hardware

configurations.

A Device overrides defintion is stored as a devices.json file in the preset slot.

Request

Retrieve the Device overrides of the currently active preset:

OxXFO 0x00 0x21 0x45 0x02 OxOF OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x0F Preset devices

0xF7 SysEx closing byte

Retrieve a Device overrides by specifying its bank number and slot number:

OxFO 0x00 0x21 0x45 0x02 OxOF bankNumber slot OxF7

Pagel2

SysEx implementation | Electra One Documentation

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0XxOF Preset devices

bankNumber Bank number (0 .. 5)

slot Slot(0..11)

0xF7 SysEx closing byte

Response

OxFO 0x00 0x21 @x45 0x01 OxOF preset-devices—json-data OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x@F Preset devices

preset—-devices—json-data JSON document with a list of preset device overrides

0xF7 SysEx closing byte

An example of preset-devices-json-data

{
"version":1,
"devices": [
{
PalefPgil,
""name":"Selection Device",
"port":"portl",
""channel":4,
"rate":0
i
{
"id":2,
"name" :"0P-XY",
"port":"portl",
""channel":1,
"rate":0
}
1
¥

Pagel3

SysEx implementation | Electra One Documentation

Get Persisted data

This request retrieves the persisted preset data stored in a specific preset slot on the controller. If no bank or slot number is
provided, the controller returns the persisted data from the currently active slot. If both parameters are provided, the data is

retrieved from the specified bank and slot.

Persisted preset data is a JSON file that contains a Lua table previously saved using the persist() function. Preset developers
can use this feature to store custom configuration settings, runtime values, and other important data that should remain available

even after the controller is restarted.

A Persisted data is stored as a data.json file in the preset slot.

Request

Retrieve persisted data of the currently active preset:

OxFO 0x00 0x21 0x45 0x02 0x12 OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x12 JSON data file

0xF7 SysEx closing byte

Retrieve persisted data by specifying its bank number and slot number:

OXFO 0x00 0x21 0x45 0x02 0x12 bankNumber slot OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x12 JSON data file

bankNumber Bank number (0 .. 5)

slot Slot(0..11)

0xF7 SysEx closing byte

Response

OxFO 0x00 0x21 0x45 0x01 0x12 datafile-json-data OxF7

Pagel4

SysEx implementation | Electra One Documentation

0xF@ SysEx header byte

0x00 ©@x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x12 Persisted JSON data file

datafile-json-data JSON data saved with a Lua persist() function
0xF7 SysEx closing byte

An example of datafile-json-data

{
array = {1, 2, 3},
objArray = {
{ keyl = "text" },
{ key2 = 1.2 },
{ key3 = true }
i
number = 1.42,
text = "hello table",
boolean = false
}

Get Performance

Get Performance request retrieves the performance JSON stored in a specific preset slot on the controller. If no bank number or slot
number is provided, the controller will return the performance data from the currently active slot. If both parameters are provided,

the controller will fetch the performace from the specified bank and slot.

A Performance is a structured JSON file that defines a custom page made up of controls and macro controls that reference existing
controls within the preset. It allows users to build a personalized performance view with re-arranged layout, without modifying the

original preset.

A Performance is stored as a performance.json file in the preset slot.

Request

Retrieve the performance of the currently active preset:

OxFO 0x00 0x21 0x45 0x02 0x11 bankNumber slot OxF7

0xF@ SysEx header byte
0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x11 Performance

Pagel5

SysEx implementation | Electra One Documentation

0xF7 SysEx closing byte

Retrieve the performance of the currently active preset:

OXFO 0x00 0x21 0x45 0x02 0x11 bankNumber slot OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x11 Performance

bankNumber Bank number (0 .. 5)

slot Slot(0..11)

0xF7 SysEx closing byte

Response

OXFO 0x00 0x21 0x45 0x01 0x11l performance-json-data OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x01 Data dump

0x11 Performance

performance-json-data Performance JSON data

0xF7 SysEx closing byte

Detailed information about performance-json-data is provided at Performance format description

An example of performance-json-data

"version":1,

"references": [

{
"controlSetId":1,
"potId":1,
"controlId":1,
"name" :"Fader A"

By

{

Pagel6

https://docs.electra.one/developers/performanceformat.html

SysEx implementation | Electra One Documentation

"controlSetId":1,

"potId":6,
"valueRefs": [
{

"controlId":1,
"valueId":"value",
"channel":1,
"mode" :"dataPipe",
"pipe": {

"name":"output",
"bankNumber":5,

"slot":1

¥

i

{
"controlId":2,
"valueId":"value",
"mode" :"setValue",
"depth":50

}

I,
"name":"A1l faders"

1P
"groups": [
{
"id":4,
""pageId":1,
""name" :"GROUP LABEL",
"color":"ffffff",
"bounds": [
14,
6,
993,
171

Get Configuration

A request to fetch the current Electra One configuration. This configuration file defines the general behavior and settings of the

controller

Request

OxFO 0x00 0x21 0x45 0x02 0x02 OxF7

0xF@ SysEx header byte

Pagel7

SysEx implementation | Electra One Documentation

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x02 Configuration file

0xF7 SysEx closing byte

Response

OxFO 0x00 0x21 @x45 0x01 0x02 configuration-json-data OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x02 Configuration file

configuration-json-data JSON document with info about Electra (see below)

0xF7 SysEx closing byte

Detailed information about configuration-json-data is provided at Configuration format description

An example of configuration-json-data

{
"version": 2,
"router": {
i
"presetBanks": [
P
"usbHostAssigments": [
P
"midiControl": [
]

+

Get List of presets

This request retrieves a list of all presets that are currently saved on the controller.

Request

Pagel8

https://docs.electra.one/developers/confformat.html

SysEx implementation | Electra One Documentation

OXFO 0x00 0x21 0x45 0x02 0x04 OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x04 Preset list

0xF7 SysEx closing byte

Response

OxFO 0x00 0x21 @x45 0x01 0x04 preset-list-json-data OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x04 Preset list

preset-list—json-data JSON document with a list of presets

0xF7 SysEx closing byte

An example of preset-list-json-data

"version":1,
"current":{
"bankNumber":5,
"slot":0
bo
"presets": [
{
"slot":0,
"bankNumber":5,
"name":"EMM Ctrl 10.52",
"projectId":"4bJi5KIqgQB8th333Na7",
"hasLua":true,
"isPinned":false

"slot":3,
"bankNumber":5,

Page19

SysEx implementation | Electra One Documentation

"name":"VCV Rack 2",
"projectId":"4rIzUF8a60kXiYsyv1lTN",
"hasLua":true,

"isPinned":false

i

{
"slot":11,
"bankNumber":5,
"name" :"Rhodes Chroma",
"projectId":"HxepQNRfBdIo@CyMyCqu",
"hasLua": false,
"isPinned":false

}

Get Preset slot information

This request retrieves information about the Preset slot and the preset stored in it.

Request

OxFO 0x00 0x21 0x45 0x02 0x08 bankNumber slot OxF7

0xF@ SysEx header byte

0x00 ©@x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x04 Preset slot

bankNumber Bank number (0 .. 5)

slot Slot(0..11)

0xF7 SysEx closing byte

Response

OXFO 0x00 0x21 0x45 0x01 0x04 preset-list-json-data OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x01 Data dump

0x08 Preset slot

preset-slot—json-data JSON document with a preset slot information

Page20

SysEx implementation | Electra One Documentation

0xF7 SysEx closing byte

An example of preset-slot-json-data

{
"version":1,
"bankNumber":0,
"slot":0,
"name'":"Demo preset",
"projectId":"IJopUYMTf2TW1PH7GNYXD",
"hasLua":true,
"isPinned":false,
"files": [
{
"name'":"preset.json",
"'md5" :"b58f9ee9391b7e49f471fcbb2deb536¢"
Vo
{
"name":"main. lua",
"md5":"7f00373c5818f254ef19a82217a18be0d"
i
{
"name":"devices.json",
"'md5" :"5dec6bf7eebb098dda3d706fe6c2f115"
}
1
¥

Get List of snapshots

A request to fetch the list of snapshots for a preset associated with a specific projectld.

Request

OXFO 0x00 0x21 0x45 0x02 0x05 snaphost-list-request-json-data OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x05 Snaphost list
snapshot-list-request-json-data

0xF7 SysEx closing byte

Page21

SysEx implementation | Electra One Documentation

An example of snapshot-list-request-json-data

"projectId": "IJopUYMf2TW1PH7GNYxD"

Response

OxFO 0x00 0x21 @x45 0x01 0x05 snapshot-list-json-data OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Data dump

0x05 Snapshot list

snapshot-list-json-data JSON document with a list of snapshots

0xF7 SysEx closing byte

An example of snapshot-list-json-data

{
"'version":1,
"projectId":"IJopUYMf2TW1PH7GNYxD",
"snapshots": [
{
"slot":0,
"bankNumber'":0,
""name":"AQ",
"color":"FFFFFF",
"filename":"s4380877.json"
}
1
¥
Get Snapshot data

A request to fetch snapshot data stored in a specific snapshot bank and slot.

Request

0xFO 0x00 0x21 0x45 0x02 0x03 snapshot-request-json-data OxF7

Page22

SysEx implementation | Electra One Documentation

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x03 Snapshot data

snapshot-request-json—-data

0xF7 SysEx closing byte

An example of snapshot-request-json-data

{
"projectId":"IJopUYMf2TWIPH7GNYXD",
"bankNumber":0,
"slot":0
¥
Response

OXFO 0x00 0x21 0x45 0x01 0x03 snapshot-json-data OxF7

0xF0@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x01 Data dump

0x03 Snapshot data

snapshot—json-data JSON document with snapshot data
0xF7 SysEx closing byte

An example of snapshot-json-data

"version":1,
"projectId":"IJopUYMf2TW1PH7GNYxD",
"parameters": [

{
"deviceId":1,
"messageType":1,
"parameterNumber":102,
"midiValue":1

Yo

Page23

SysEx implementation | Electra One Documentation

{
"deviceId":2,
""messageType":1,
""parameterNumber":2,
"midivValue":38

}

Get List of captures

A request to fetch the list of captures for a preset associated with a specific projectld.

Request

OxFO 0x00 0x21 0x45 0x02 0x31 capture-list-request-json-data OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x31 Capture list

capture-list-request-json-data

0xF7 SysEx closing byte

An example of capture-list-request-json-data

"projectId": "IJopUYMf2TWIPH7GNYxD"
¥

Response

0xFO 0x00 0x21 @x45 0x01 0x31 capture-list-json-data OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x01 Data dump

0x31 Capture list

Page24

SysEx implementation | Electra One Documentation

capture-list-json-data JSON document with a list of snapshots

0xF7 SysEx closing byte

An example of capture-list-json-data

{
"version":1,
"projectId":"IJopUYMf2TW1PH7GNYXD",
"captures": [
{
"slot":0,
"bankNumber'":0,
""name":"AQ",
"color":"FFFFFF",
"filename":"s5620078.mid",
"midiInterface":"midiUsbDev",
"port":1
}
1
¥
Get Capture data

A request to fetch capture data stored in a specific capture bank and slot.

Request

OXFO 0x00 0x21 0x45 0x02 0x30 capture-request-json-data OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x30 Capture data

capture-request-json—-data

0xF7 SysEx closing byte

An example of capture-request-json-data

"projectId":"IJopUYMf2TW1PH7GNYxD",

Page25

SysEx implementation | Electra One Documentation

"bankNumber":0,
"slot":0

Response

OxFO 0x00 0x21 0x45 0x01 0x30 capture-data OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x01 Data dump

0x30 Capture data

capture-data packed 7-bit MIDI SMF data

0xF7 SysEx closing byte

Get USB Host devices

A request to fetch a list of all devices currently connected to the controller’s USB Host port.

Request

OxFO 0x00 0x21 0x45 0x02 0x10 OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x02 Query data

0x10 USB Host device list

0xF7 SysEx closing byte

Response

0xFO 0x00 0x21 0x45 0x01 0x10 usb-host-devices—json-data OxF7

0xF@ SysEx header byte
0x00 0x21 ©0x45 Electra One MIDI manufacturer Id

Page26

SysEx implementation | Electra One Documentation

0x01 Data dump
0x10 USB Host devices
usb—host-devices—json—-data List of USB Host devices in JSON format

0xF7 SysEx closing byte

An example of usb-host-devices-json-data

{
"version":1,
"devices": [
{
"manufacturer":"ESI",
"product":"Xjam",
"seriaWNumber":"123456",
"vid":9587,
"pid":54,
"ports": [
{
"devicePort":1,
"name":"Port 1",
"electraPort":"portl"
¥
|
¥
1
¥

Uploading data to the controller

The commands in this section are used to upload data to the Electra One controller. They allow you to send presets, Lua scripts, and

other data files directly to the device.

Since an upload is a command, the controller will respond with an ACK if the operation was successful, ora NACK if it failed.

Upload Preset

The preset upload command is used to send a new preset to the Electra One MIDI controller. The preset is always uploaded to the

currently selected (active) preset slot.

Once the upload is complete, the preset is immediately activated and ready to use. An uploaded preset is stored as a

preset.json file in the preset slot.

OXFO 0x00 0x21 0x45 0x01 0x01 preset-json-data OxF7

0xF@ SysEx header byte

Page27

SysEx implementation | Electra One Documentation

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x01 Upload data

0x01 Preset JSON file

preset—json-data bytes representing ASCII bytes of the preset file
0xF7 SysEx closing byte

Detailed information about preset—json-data is provided at Preset format description

Upload Lua script

The Lua script upload command is used to upload and execute a new Electra One Lua Extension script. The script is uploaded to

the currently selected (active) preset slot.

The Lua script refers to the main script file that runs when the preset is initialized. This command cannot be used to upload

additional Lua files. Any extra Lua files must be uploaded separately using the SysEx File Transfer API.

An uploaded Lua script is stored as a main.lua file in the preset slot.

OxFO 0x00 0x21 0x45 0x01 0x0C script-source-code OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id

0x01 Upload data

0x0C Lua Script file

script—source-code bytes representing a source code of the Electra One Lua script application

0xF7 SysEx closing byte
Detailed information about developing Lua script applications is provided at Electra One Lua script documentation.

Upload Device overrides

The Device Overrides upload command is used to upload and replace the device definitions in the current preset. The overrides are

uploaded to the currently selected (active) preset slot.

A Device Override is a custom modification of the devices used in a preset. It allows users to change the MIDI ports and channels
assigned to devices without modifying the preset itself, making it easier to adapt presets to different setups or hardware

configurations.

An uploaded Devices definition is stored as a devices.json file in the preset slot.

OxFO 0x00 0x21 @x45 0x01 OxOF preset-devices—json-data OxF7

0xF@ SysEx header byte

Page28

https://docs.electra.one/developers/presetformat.html
https://docs.electra.one/developers/luaext.html

SysEx implementation | Electra One Documentation

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x01 Upload data
0x0F Preset devices

preset—devices—json-data JSON document with a list of preset device overrides

0xF7 SysEx closing byte

Upload Persisted data

The Persisted data upload command is used to upload and replace the JSON data that will be interpreted as a persisted Lua table in

the current preset. The data is uploaded to the currently selected (active) preset slot.

Persisted preset data is a JSON file that contains a Lua table previously saved using the persist() function. This data can be
loaded back into a Lua table using the recall() function. Preset developers can use this feature to store custom configuration

settings, runtime values, and other important data that should remain available even after the controller is restarted.

An uploaded Persisted data is stored as a data.json file in the preset slot.

OxFO 0x00 0x21 0x45 0x01 0x12 datafile-json-data OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id

0x01 Upload data

0x12 Persisted JSON data file

datafile-json-data JSON data saved with a Lua persist() function

0xF7 SysEx closing byte

Upload Performace

The Performance upload command is used to upload and replace the performance JSON data in a specific preset slot on the

controller. The data is always uploaded to the currently selected (active) slot.

A Performance is a structured JSON file that defines a custom page made up of controls and macro controls that reference existing
controls within the preset. It allows users to build a personalized performance view with re-arranged layout, without modifying the

original preset.

An uploaded Performance data is stored as a performance.json file in the preset slot.

OXFO 0x00 0x21 0x45 0x01 0x11l performance-json-data OxF7

0xF@ SysEx header byte
0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x01 Upload data

Page29

SysEx implementation | Electra One Documentation

0x11 Performance
performance-json-data Performance JSON data

0xF7 SysEx closing byte

Upload Configuration

The configuration upload call is meant to upload and apply a new Electra One configuration to the controller.

OxFO 0x00 0x21 0x45 0x01 0x02 configuration-json-data OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id

0x01 Upload data

0x02 Configuration file

configuration-json-data bytes representing ascii bytes of the configuration file

0xF7 SysEx closing byte

Detailed information about configuration-json-data is provided at Configuration format description

Persistent commands

Persistent commands make permanent changes to the data stored on the controller. This means that any changes made using

persistent commands will still be in effect even after the controller is powered off and restarted.

Remove Preset

The Remove Preset command permanently removes a preset identified by its bank number and slot.

OxFO 0x00 0x21 0x45 0x05 0x01 bank-number slot OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x05 Remove command

0x01 Preset

bank-number an identifier of the preset bank (0 .. 5)
slot an identifier of the preset slot (0 .. 11)

0xF7 SysEx closing byte

Page30

https://docs.electra.one/developers/confformat.html

SysEx implementation | Electra One Documentation

Remove Lua script

The Remove Lua Script command permanently deletes the main Lua script file associated with a specific bank number and slot.

This command cannot be used to remove additional files; to delete those, use the Remove Preset Slot files command instead.

OxFO 0x00 0x21 0x45 0x05 0x0C bank-number slot OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x05 Remove command

0x0C Lua script

bank-number an identifier of the preset bank (0 .. 5)
slot an identifier of the preset slot (0 .. 11)

0xF7 SysEx closing byte

Remove Config

The Remove Configuration command permanently deletes the configuration file from the controller.

OxFO 0x00 0x21 0x45 0x05 0x02 OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x05 Remove command

0x02 Configuration file

0xF7 SysEx closing byte

Remove Snapshot

The Remove Snapshot command permanently deletes a snapshot from the controller.

OXFO 0x00 0x21 0x45 0x05 0x06 snapshot-id-json-data OxF7

0xF@ SysEx header byte
0x00 0x21 ©0x45 Electra One MIDI manufacturer Id

0x05 Remove command

Page31

SysEx implementation | Electra One Documentation

0x06 Snapshot
snapshot-id—json-data Snapshot identification JSON data
0xF7 SysEx closing byte

An example of the snapshot-json-data

{
"projectId": "SCI1mUlv6ojnm8IojuhY",
"bankNumber": 2,
"slot": 5

¥

Remove Capture

The Remove Capture command permanently deletes a capture from the controller.

0xFO 0x00 0x21 @x45 0x05 0x06 capture-id-json-data OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x05 Remove command

0x32 Capture

capture-id-json-data Snapshot identification JSON data
0xF7 SysEx closing byte

An example of the capture-json-data

{
"projectId": "SCI1mUlv6ojnm8IojuhY",
"bankNumber": 0,
"slot": 0

}

Clear Preset slot

The Remove Preset command permanently removes a preset identified by its bank number and slot.

Page32

SysEx implementation | Electra One Documentation

OxFO 0x00 0x21 0x45 0x05 0x01 bank—-number slot OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x05 Remove command

0x08 Preset slot

bank-number an identifier of the preset bank (0 .. 5)
slot an identifier of the preset slot (0 .. 11)

0xF7 SysEx closing byte

Update Snapshot

The Update Snapshot command updates the attributes of an existing snapshot.

OxFO 0x00 0x21 @x45 0x04 0x06 snapshot-json-data OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x04 Update command

0x06 Snapshot

snapshot—json-data Snapshot JSON data

0xF7 SysEx closing byte

An example of the snapshot-json-data

{
"projectId": "SCI1mUlv6ojnm8IojuhY",
"bankNumber": 0,
"slot": 5,
"name'": "House piano",
"color": "E4660E"

b

Update Capture

The Update Capture command updates the attributes of an existing capture.

Page33

SysEx implementation | Electra One Documentation

OxFO 0x00 0x21 0x45 0x04 0x06 capture-json—-data OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x04 Update command

0x06 Capture

capture-json-data Capture JSON data

0xF7 SysEx closing byte

An example of the capture-json-data

{
"projectId": "SCI1mUlv6ojnm8IojuhY",
"bankNumber": 1,
"slot": 4,
"name": "Synths bank",
"color": "DD1530"
¥

Swap Snapshots

The Swap Snapshots command exchanges the snapshots between two snapshot slots. If one of the slots is empty, the operation

becomes a simple move instead of a swap.

OXFO 0x00 0x21 0x45 0x06 0x06 snapshot-ids—json-data OxF7

0xF0@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x06 Swap command

0x06 Snapshot

snapshot-ids—-json-data

0xF7 SysEx closing byte

An example of the snapshot-json-data

Page34

SysEx implementation | Electra One Documentation

{
"projectId": "SCI1mUlv6ojnm8IojuhY",
"fromBankNumber": 0,
"fromSlot": 5,
"toBankNumber": 0,
"toSlot": 4
¥

Swap Captures

The Swap Captures command exchanges the captures between two capture slots. If one of the slots is empty, the operation becomes

a simple move instead of a swap.

OxFO 0x00 0x21 0x45 0x06 0x06 capture-ids-json-data OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x06 Swap command

0x32 Capture

capture-ids—-json-data

0xF7 SysEx closing byte

An example of the capture-json-data

{
"projectId": "SCI1lmUlv6ojnm8IojuhY",
"fromBankNumber": 0,
"fromSlot": 0,
"toBankNumber": 1,
"toSlot": @
¥

Runtime commands

Runtime commands change how the controller behaves while it’s running, but these changes are not saved and will be lost after a

restart.

Switch Preset slot

The Preset lot switch command changes the active preset slot. If the selected slot contains a preset, it will be loaded. If the slot is

empty, it becomes the active slot and can be used to load a new preset.

Page35

SysEx implementation | Electra One Documentation

OxFO 0x00 0x21 0x45 0x09 0x08 bank—number slot OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x09 Switch command

0x08 Preset slot

bank-number an identifier of the preset bank (0 .. 5)
slot an identifier of the preset slot (0 .. 11)

0xF7 SysEx closing byte

Load Preloaded preset

The Load Preloaded preset command copies a preloaded preset into a preset slot and activates it. This allows the controller to

quickly load and switch to a prepared preset without using standard upload procedures.

Preloaded presets are stored in special location on the controller. Users can upload presets to these locations either by using the

USB mass storage mode in the bootloader or by using the SysEx File Transfer API.

OxFO 0x00 0x21 0x45 0x04 0x08 preset-slot-json-data OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x04 Update command

0x08 Preset slot

preset-slot—json-data Preset slot update JSON data
0xF7 SysEx closing byte

An example of the preset-slot-json-data

{

"bankNumber": 5,

"slot": 1,

"preset": "xot/ableton/Cabinet"
+

Switch Page

The Switch Page command is used to change the active page.

Page36

SysEx implementation | Electra One Documentation

OxFO 0x00 0x21 0x45 0x09 Ox0A page—number OxF7

0xF@ SysEx header byte

0x00 0x21 @x45 Electra One MIDI manufacturer Id
0x09 Switch command

0x0A Page

page—number an identifier of the page (0 .. 11)

0xF7 SysEx closing byte

Switch Control Set

The Switch Control set command changes the currectly selected set of knobs assigned to the on-sreen controls.

OxFO 0x00 0x21 0x45 0x09 0x0B control-set-id OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 FElectra One MIDI manufacturer Id
0x09 Switch command

0x0B Control Set

control-set-id an identifier of the page (0 .. 2)

0xF7 SysEx closing byte

Set Preset slot

The Set Preset Slot command changes the currently selected preset bank and slot. However, it does not activate or load the preset in
that slot, unlike the Switch Preset Slot command. Instead, Set Preset Slot simply arms the slot as selected for subsequent operations,

such as uploading preset files.

OxFO 0x00 0x21 0x45 0x14 0x08 bank—number slot OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x09 Update runtime command

0x08 Preset slot

bank-number an identifier of the preset bank (0 .. 5)

Page37

SysEx implementation | Electra One Documentation

slot an identifier of the preset slot (0 .. 11)

0xF7 SysEx closing byte

Set Snapshot slot

The Set Snapshot Slot command changes the currently selected snapshot bank and slot. The selected slot is then armed for use with

subsequent snapshot operations.

OXFO 0x00 0x21 0x45 0x14 0x09 snapshot-slot-json-data OxF7

0xF0@ SysEx header byte

0x00 ©0x21 0x45 FElectra One MIDI manufacturer Id

0x09 Update runtime command

0x09 Snapshot slot

snapshot-slot-json-data JSON document with data to identify the snapshot slot
0xF7 SysEx closing byte

An example of snapshot-slot-json-data

{
"projectId":"4bJi5KIqgQB8th333Na7",
"bankNumber":0,
"slot":3
¥
Set Capture slot

The Set Capture Slot command changes the currently selected capture bank and slot. The selected slot is then armed for use with

subsequent capture operations.

OxFO 0x00 0x21 0x45 0x14 0x33 capture-slot-json-data OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x09 Update runtime command

0x09 Snapshot slot

capture-slot-json-data JSON document with data to identify the capture slot

Page38

SysEx implementation | Electra One Documentation

0xF7 SysEx closing byte

An example of capture-slot-json-data

{
"projectId":"4bJi5KIqgQB8th333Na7",
"bankNumber":5,
"slot":11

¥

Execute Lua command

The Run Lua Command executes arbitrary Lua commands, effectively serving as an API endpoint for controlling Electra One

presets from external devices and applications.

It allows you to remotely manage Electra One presets using Lua commands, offering a powerful way to interact with the controller

from external sources. The maximum allowed length of a Lua command is 65,535 bytes.

However, we recommend keeping commands short — commands shorter than 65 bytes are executed significantly faster than longer

ones.

To optimize performance, it is better to use this SysEx call to trigger Lua functions defined in a previously uploaded Lua script,

rather than sending large blocks of arbitrary Lua code.

OxFO 0x00 0x21 0x45 0x08 0x0D lua—command-text OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x08 Execute command

0x0D Function

lua—command-text ASCII bytes representing the Lua command

0xF7 SysEx closing byte

For backwards compatibility, the follwoing message structure is supported too:

OxFO 0x00 0x21 0x45 0x08 0x0C lua—command-text OxF7

0xF@ SysEx header byte
0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x08 Execute command

Page39

SysEx implementation | Electra One Documentation

0x0C Lua file
lua—command-text ASCII bytes representing the Lua command

0xF7 SysEx closing byte

The Tlua—-command-text is free form string containing Lua command to be executed. The maximum length is limited to 128

characters. It is recommended to call predefined functions.

An example of the lua-command-text

hideControl (1)

or

print ("Hello MIDI world!")

Reload Preset slot

The Reload Preset Slot command reinitializes and restarts the preset stored in the specified preset slot. The preset instance currently
running in that slot will be terminated. If available, associated Lua scripts, Device Overrides, and Performance data will also be

reinitialized.

OxFO 0x00 0x21 0x45 0x08 0x08 OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x08 Execute command

0x08 Preset slot

bankNumber Bank number (0 .. 5)

slot Slot(0..11)

0xF7 SysEx closing byte

Update control

A call to update the name, color, and visibility of a control. These changes are applied at runtime only, which means they will be

lost when the Electra One is powered off.

OXFO 0x00 0x21 0x45 0x14 0x07 control-id-1sb control-id-msb control-upadate-json-data OxF7

Page40

SysEx implementation | Electra One Documentation

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x14 Update runtime command

0x07 Control

control-id-1sb a LSB ofa controlld
control-id-msb a MSB of a controlld
control-update-json-data

0xF7 SysEx closing byte

The controlId is splitinto two 7-bit parts: a most significant byte (MSB) and a least significant byte (LSB), using the following

logic:

controlld >> 7
controlld & Ox7F

control-id-msb
control-id-1sb

The control-update-json-data may include up to four optional attributes: name , color , visibility ,and value . When the
control update command is received, any provided attributes will be applied to the control. You only need to include the attributes

you want to change — all others can be left out.

Updating the value attribute allows you to set value.text only, which is equivalent to using the SysEx call for overriding the
value text.

An example of the control-json-data

change all attrinbutes:

{
"name": "Track 1",
"color": "FFFFFF",
"visible": true

}

one attribute only:

"name": "Track 2"

overriding a value text:

"value": {
"id": "value",
"text": "6.2dB"

Page41

SysEx implementation | Electra One Documentation

Note, when overriding a value text the "id": "value" is not required for single value controls, such as faders, pads, and relative
controls. The text is text string of printable ASCII characters, maximum length is 15 characters. Setting the text string with 0

bytes length cancels the value override. When cancelled, the controller will display the current value according to its settings.

Override value text

The Override Value Text command replaces the control’s current displayed value with custom text. It gives developers full control

over what is shown on the screen, which is especially useful when working with Relative Control Change messages.
The custom text also overrides the output from Lua Value formatters.

Although value texts can also be overridden using the Control Update command, the Override Value Text command is a more

performance-optimized option, as it avoids the overhead of JSON parsing and valueld translation.

OXFO 0x00 0x21 0x45 0x14 OxQE control-id-1sb control-id-msb numeric-value-id text OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x14 Update runtime command

0x0E Override text value

control-id-1sb a LSB ofa controlld

control-id-msb a MSB of a controlld

numeric-value-id a numeric identifier of the value within the control
text atext string to be displayed as value

0xF7 SysEx closing byte

The controlId is splitinto two 7-bit parts: a most significant byte (MSB) and a least significant byte (LSB), using the following

logic:

controlld >> 7
controlld & Ox7F

control-id-msb

control-id-1sb

The numeric-value-id identifies Electra One’s MIDI port as follows. Note: the value Ids must be selected according to the type
of control being used.

° 0x00 default value of single value controls (fader, pads, and relative controls)

e 0x01 attack, 11, x

e 0x02 decay, hold, release, rl, y

° 0x03 sustain, decay, break, release, 12

e 0x04 release, sustain, slope, r2

Page42

https://docs.electra.one/developers/luaext.html#value-formatters

e 0x05
° 0x06
° 0x07
e 0x08
The text

SysEx implementation | Electra One Documentation

release, sustain, 13
release, r3
14

r4

is text string of printable ASCII characters, maximum length is 15 characters. Setting the text string with 0 bytes

length cancels the value override. When cancelled, the controller will display the current value according to its settings.

Set Bottom Bar text

The Set Bottom Bar Text command replaces the default text shown in the status bar at the bottom of the screen. The custom text

remains visible until the command is called again with a string of 0 bytes in length, which clears the text and restores the default

display.

OxFO 0x00 0x21 0x45 0x14 0x77 text OxF7

0xF@ SysEx header byte

0x00 0x21 ©0x45 Electra One MIDI manufacturer Id

0x14 Update runtime command

0x77 Override text value

text atext string to be displayed as value

0xF7 SysEx closing byte

The text

is text string of printable ASCII characters, maximum length is 40 characters. Setting the text string with 0 bytes

length cancels the value override. When cancelled, the controller will display the current value according to its settings.

Set Events MIDI port

The Set Event Port command sets the MIDI port used to transmit event notifications triggered by user actions on the controller

(e.g., page switching).

OXFO 0x00 0x21 0x45 0x14 0x7B port—-number OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x14 Update runtime command

0x7B Select the port to transmit UI driven events on

port-number a MIDI port to be used

0xF7 SysEx closing byte

Page43

SysEx implementation | Electra One Documentation

The port-number identifies Electra's MIDI port as follows:

e 0Qx00 Portl
e 0x01 Port2

e 0x02 CTRL

Subscribe Events

The Subscribe Events command tells the controller which SysEx event messages should be sent out when specific events occur.

OxFO 0x00 0x21 0x45 0x14 0x79 event-flags OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id

0x14 Update runtime command

0x79 Event subscriptions

event-flags a byte where each bit represents specific type of event

0xF7 SysEx closing byte

The event-flags a byte with the following bits (flags). The individual flags must be ORed to produce the final byte value:

e 0x00 None

e 0x01 (bit @) Page events

e 0x02 (bit 1) Control Setevents
e ©0x04 (bit 2) USB Host events
e 0x08 (bit 3) Potsevents

e 0x10 (bit 4) Touch events

e ©0x20 (bit 5) Button events

e 0x40 (bit 6) Window events

Note, currently only Page events and Pots events are supported.

to reset the subscribed events, send a message with the flags setto ©0x00 (None).

Control Logger Output

This system call is used to control whether Electra One sends debugging log messages. The command sets a non-volatile flag inside

the controller, meaning the logger's status remains saved even after the controller is powered off.
However, startup log messages are always sent, regardless of the logger's enabled or disabled state.

Debug log messages generated by the Lua print() function are always sent out.

Page44

SysEx implementation | Electra One Documentation

OxXFO 0x00 0x21 0x45 Ox7F 0x7D status 0x00 OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x7F System call

0x7D Logger

status desired state of the logger (see below)
log-level level of verbosity of log messages (0 .. 3)

0xF7 SysEx closing byte

List of possible status wvalues:

° 0x00 disable the logger

e 0x01 enable the logger
The log-level sets the verbosity of log messages sent by the Electra One controller. Higher log levels add extra messages to
stream of log messages. The log-level parameter is ignored when the status parameter is setto 0x00 .

e 0x00 critical messages (that cannot be disabled)

° 0x01 warning messages

° 0x02 informative messages

° 0Qx03 tracing messages

Set Logger MIDI port

The Set Log Port command sets the USB device MIDI port used to transmit log messages. By default, log messages are sent to the
Electra Controller CTRL port.

Note: Although log messages are considered a type of controller event, they do not follow the Event Port settings. Instead, they use

their own dedicated port, which is configured using this SysEx command.

0xFO 0x00 0x21 @x45 0x14 0x7D port-number reserved OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x14 System call

0x7D Logger

port-number a MIDI port to be used

reserved an optional parameter. It is not currently used.

Page45

SysEx implementation | Electra One Documentation

0xF7 SysEx closing byte

The port-number identifies Electra's MIDI port as follows:

e 0x00 Portl
e 0x01 Port2

e 0x02 CTRL

Control Window repaints

The Window Repaint command provides control over the graphic component repainting process. It can be used to accumulate

multiple individual repaint requests into a single repaint operation, improving overall performance.

OxFO 0x00 0x21 0x45 Ox7F 0x7A command reserved OxF7

0xF@ SysEx header byte

0x00 ©@x21 0x45 Electra One MIDI manufacturer Id
0x7F System call

0x7A Window

command a command to execute

reserved an optional parameter. It is not currently used.

0xF7 SysEx closing byte

The command must be one of the following:

° 0x00 Stop the window repainting process

e 0x01 Repaint the window and resume the window repainting process

Note: When repaints are stopped, the controller does not update any graphics on the screen and may appear unresponsive.

Control Debugging

The Debig command allows developers to enable or disable Lua script debugging. The feature is in its early initial phase. When
enabled, the controller will report every single executed line of the Lua script code using the logger text message. The feature is

intended to implement a full blown Lua debugger in the future.

OxFO 0x00 0x21 0x45 0x7C command OxF7

0xF0 SysEx header byte
0x00 0x21 0x45 Electra One MIDI manufacturer Id

Page46

SysEx implementation | Electra One Documentation

0x7C Debug
command a command to execute

0xF7 SysEx closing byte

The command must be one of the following:

e 0x00 Disable debugging

e 0x01 Enable debugging

Control Midi learn

The Set MIDI Learn command enables or disables the MIDI Learn functionality on the controller. When enabled, the controller

sends MIDI Learn event messages back to the host for all incoming MIDI messages.
While MIDI Learn is active, incoming MIDI messages are not processed in the standard way.

The MIDI Learn event message is described in the Controler events section.

OXFO 0x00 0x21 0x45 0x03 status OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x03 Midi Learn

status Desired state of the MIDI learn functionality (see below)
0xF7 SysEx closing byte

List of possible status values:

e 0x00 disable the MIDI learn

e 0x01 enable the MIDI learn

Reboot

The Reboot command restarts the controller.

OxXFO 0x00 0x21 0x45 Ox7F 0x78 OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 FElectra One MIDI manufacturer Id
0x7F System call

0x78 Reboot

Page47

SysEx implementation | Electra One Documentation

0xF7 SysEx closing byte

Controller events

Controller events are sent from the controller to the host computer. Their primary purpose is to keep the host informed about
important actions or changes occurring on the controller, such as page switches, preset changes, knob touches, and device

connections.

By default, controller events that are triggered by user actions (not initiated by SysEx API commands) are transmitted through the
Electra Controller CTRL MIDI port. This default behavior can be changed using the Set Event Port command, allowing
developers to route these user-driven event messages to a different USB device MIDI port if needed — keeping event traffic

separated from other MIDI streams.

However, events triggered as a response to SysEx API commands are always sent back over the same MIDI port on which the
original SysEx API command was received. This ensures that responses remain properly linked to their initiating requests, even if a

custom event port has been configured.

ACK

Acknowledged. Informs the host that the last operation was successfully completed.

OxFO 0x00 0x21 0x45 Ox7E 0x01 transaction-id-1sb transaction-id-msb @xF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x7E Controller event

0x01 ACK (acknowledged)

transaction-id-1sb transaction Id LSB
transaction-id-msb transaction Id MSB

0xF7 SysEx closing byte

Where:

e transaction-id-1lsb is the least significant 7 bits (LSB) of the transaction Id

e transaction-id-msb is the most significant 7 bits (MSB) of the transaction Id

The Transaction Id is split into two 7-bit parts: a most significant byte (MSB) and a least significant byte (LSB), using the

following logic:

transaction-id-msb = transactionId >> 7
transaction-id-1sb = transactionId & Ox7F

Page48

SysEx implementation | Electra One Documentation

Ifa Transaction Id is included in the Command, the corresponding ACK or NACK response will also include the same two

bytes, allowing you to match the response to the original command.

Example

The ACK with transaction Id 4183 should be transferred as

OxFO 0x00 0x21 0x45 Ox7E 0x01 Ox77 0x20 OxF7

If no Transaction ID was included in the request, a Transaction ID of 0 will be present in the ACK response.

NACK

Not acknowledged. Informs the host that the last operation did not succeed.

OxFO 0x00 0x21 0x45 Ox7E 0x00 transaction-id-1sb transaction-id-msb 0OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x7E Controller event

0x00 NACK (not acknowledged)
transaction-id-1sb transaction Id LSB
transaction-id-msb transaction Id MSB

0xF7 SysEx closing byte

Where:

e transaction-id-1sb is the least significant 7 bits (LSB) of the transaction Id
e transaction-id-msb is the most significant 7 bits (MSB) of the transaction Id
The Transaction Id is split into two 7-bit parts: a most significant byte (MSB) and a least significant byte (LSB), using the

following logic:

transaction-id-msb = transactionld >> 7
transaction-id-1sb = transactionId & Ox7F

Ifa Transaction Id is included in the Command, the corresponding ACK or NACK response will also include the same two

bytes, allowing you to match the response to the original command.

Example

The NACK with transaction Id 4183 should be transferred as

Page49

SysEx implementation | Electra One Documentation

OxXFO 0x00 0x21 @x45 Ox7E 0x00 0x77 0x20 OxF7

If no Transaction ID was included in the request, a Transaction ID of 0 will be present in the NACK response.

Preset switch

The Preset switch event informs the host that the user has changed the preset on the controller.

OxFO 0x00 0x21 0x45 Ox7E 0x02 bank—-number slot OxF7

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x7E Controller event

0x02 Preset switch

bank—-number Current bank number (0 .. 5)

slot Current preset slot (0 .. 11)

0xF7 SysEx closing byte

Snapshot list change

The Snapshot list change Event informs the host that the list of snapshots has been modified. It is sent whenever a snapshot is

added, updated, or removed.

OxFO 0x00 0x21 0x45 OX7E 0x03 OxF7

0xF0 SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x7E Controller event

0x03 Snapshot list change

0xF7 SysEx closing byte

Capture list change

The Capture list change Event informs the host that the list of capture has been modified. It is sent whenever a snapshot is added,

updated, or removed.

OXFO 0x00 0x21 0x45 Ox7E 0x31 OxF7

Page50

SysEx implementation | Electra One Documentation

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x7E Controller event

0x31 Capture list change

0xF7 SysEx closing byte

Pot touch

The Pot touch event informs the host when the user touches or releases a potentiometer (knob) on the controller.

OxFO 0x00 0x21 0x45 Ox7E 0x0A pot-id control-id-1sb control-id-msb touched 0xF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x7E Controller event

0x0A Pot touch activity

pot-id an identifier of the pot (0 .. 11)

control-id-1sb a LSB ofa controlld

control-id-msb a MSB of a controlld

touched issetto true for initial touch, and false when pot is released

0xF7 SysEx closing byte

Preset list change

The Preset list change event informs the host that the list of presets has been modified. It is sent whenever a preset is added,

updated, or removed.

OxFO 0x00 0x21 0x45 Ox7E 0x05 OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer I1d
0x7E Controller event

0x05 Preset list change

0xF7 SysEx closing byte

Page switch

Page51

SysEx implementation | Electra One Documentation

The Page switch event informs the host that the user has changed the active page on the controller.

OXFO 0x00 0x21 0x45 Ox7E 0x06 page—number OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 FElectra One MIDI manufacturer Id

0x7E Controller event

0x06 Page switch

page-id Current page number as defined in the preset (0 .. 11)
0xF7 SysEx closing byte

Control Set switch

The Control Set switch event informs the host that the user has changed the active Control Set on the controller.

OXxFO 0x00 0x21 0x45 Ox7E 0x07 control-set—-number OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x7E Controller event

0x07 Control set switch

control-set-number Current active control Set (0 .. 2)

0xF7 SysEx closing byte

Preset bank switch

The Preset bank switch event informs the host that the user has changed the active preset bank on the controller.

OXFO 0x00 0x21 0x45 Ox7E 0x08 preset-bank—number OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x7E Controller event

0x08 preset bank switch

preset-bank—-number Current page number (0 .. 5)

Page52

SysEx implementation | Electra One Documentation

0xF7 SysEx closing byte

USB Host change notification

Informs the host that a new device was connected or an existing device was disconnected from the USB Host port.

OXFO 0x00 0x21 0x45 Ox7E 0x08 OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id
0x7E Controller event

0x08 USB Host change

0xF7 SysEx closing byte

Snapshot change

Informs the host that the user made change regarding the snapshots. Upon receiving this event the host might want to query the

snapshot list information.

OxXFO 0x00 0x21 0x45 Ox7E 0x03 OxF7

- '0xF0" SysEx header byte - "0x00" "0x21" 0x45" Electra One MIDI manufacturer Id - "0x7E" Controller event -
'0x03" Snapshot change - "0xF7" SysEx closing byte

Snapshot bank switch

Informs the host that the user changed current snapshot bank.

OxFO 0x00 0x21 0x45 Ox7E 0x04 bank-number OxF7

0xF@ SysEx header byte

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x7E Controller event

0x04 Snapshot bank switch

bank-number Snapshot bank (0 .. 11)

0xF7 SysEx closing byte

Page53

SysEx implementation | Electra One Documentation

Midi learn info

When Electra has the MIDI learn enabled it sends a MIDI message with description of MIDI messages received on user ports to.

OxFO 0x00 0x21 0x45 0x03 midilearn—json-data OxF7

0xF@ SysEx header byte

0x00 0x21 0x45 Electra One MIDI manufacturer Id

0x03 Midi learn

midilearn-json-data a JSON data that describe detected MIDI message

0xF7 SysEx closing byte

An example of midilearn-json-data

non-SysEx:
{
"port": o,
Ilmsgll: IICC7II’

""channel": 2,
"parameterId": 10,

"value": 119
}
SysEXx:
{
"port": o,
Ilmsgll: Ilsysexll’
"data": [67, 32, 0]
+

Log message

A log message is a text that is transmitted to the host computer in order to provide the user with information what is happening in

the controller. The log messages are generated either by the firmware or user's Lua script.

OxFO 0x00 0x21 0x45 Ox7F 0x00 log-message OxF7

0xF@ SysEx header byte

Page54

SysEx implementation | Electra One Documentation

0x00 ©0x21 0x45 Electra One MIDI manufacturer Id
0x7F System call

0x00 Log message

log-message ASCII bytes representing the log message
0xF7 SysEx closing byte

The Tlog-message is a text string that start with a number representing milliseconds from the start of the controller, followed by

the space, and then the text of the message.

An example of log-message

147362 ElectraApp: preset successfully loaded

Page55

